HYDRAULIC FILTRATION PRODUCTS

STAINLESS STEEL HIGH PRESSURE FILTERS

PASSION TO PERFORM

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

evolving needs of customers and the market.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly

MARKET **LEADER**

Our work is based on a skillful interaction between advanced technology and fine workmanship, **customizing products according to specific market requests**, focusing strongly on innovation and quality, and following every step in the manufacturing of both standard and special products, fully respecting customer expectations.

Our customer-oriented philosophy, which enables us to satisfy all customer requests **rapidly** and **with personalized products**, makes us a **dynamic and flexible enterprise**. The possibility of constantly controlling and monitoring the entire production process is essential to allow us to guarantee the quality of our products.

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

TECHNOLOGY

Our constant **quest for excellence in quality and technological innovation** allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means **we can rely entirely on our own resources, without resorting to external providers.** This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring **fully-automated workstations** capable of **24-hour production**.

Introduction

SUCTION **FILTERS**

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with
- shut off valve
- In tank
- with flooded suction

RETURN **FILTERS**

Flow rates up to 3000 l/min

Pressure up to 20 bar

Mounting: - In-Line - Tank top - In single

and duplex designs

RETURN / SUCTION FILTERS

Flow rates up to 300 l/min

Pressure up to 80 bar

Mounting: - In-Line - Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting: - In-Line - Tank top

FILTERS

Flow rates up to 3000 l/min

Pressure up to 80 bar

- Mounting:
- In-Line

HIGH LOW & MEDIUM PRESSURE PRESSURE FILTERS

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

- Mounting:
- In-Line
- Manifold
- In single and duplex designs
- Parallel manifold version - In single
- and duplex designs

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 150 l/min Pressure from 320 bar up to 1000 bar

- Mounting:
- In-Line
- Manifold
- In single and duplex designs

CONTAMINATION MONITORING PRODUCTS

- Online, in-line particle counters
 Off-line Bottle sampling products
 Fully calibrated using relevant ISO standards
 A wide range of variants to support fluid types and
- communication protocols

MOBILE FILTRATION UNITS

Flow rates from 15 l/min up to 200 l/min

from 0.12 kW to 400 kW - Couplings in Aluminium

POWER

TRANSMISSION

- Aluminium bell-housings

PRODUCTS

Cast Iron - Steel - Damping rings

for motors

- Foot bracket
- FOOL Dracket
- Aluminium tanks
- Cleaning covers

ACCESSORIES

- Oil filler and

- air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve selectors
- Pipe fixing brackets
- Pressure gauges

HYDRAULIC FILTRATION PRODUCTS

	age INTRODUCTION
1	COMPANY
6	PRODUCT RANGE
11	CONTAMINATION MANAGEMENT
22	FILTER SIZING
24	CORRECTIVE FACTOR
	up to Q _{max}

			up to	Amax
(28)	bage	SUCTION FILTERS	l/min	gpm
31	STR & MPA - MPM	Submerged suction filter, with bypass or magnetic column	875	231
39	SF2 250 - 350	Semi-submerged positive head suction filter, low flow rate	160	42
47	SF2 500	Semi-submerged positive head suction filter, high flow rate	800	211
57	CLOGGING INDICATORS			

~			up t	up to P _{max}		Qmax
60 page		RETURN FILTERS		psi	l/min	gpm
63	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	750	198
91	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
99	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
117	MFBX	Bowl assembly	8	116	500	132
125	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	750	198
153	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
171	MFB	Bowl assembly	8	116	500	132
179	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3000	793
203	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3000	793
215	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	1500	396
231	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	350	92
238	CLOGGING INDICATORS					
248	ACCESSORIES					

			up t	:o P _{max}	up to	Q _{max}
(250 p	age	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
253	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	300	79
265	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	200	53
273	CLOGGING INDICATORS		,			

			up t	O P _{max}	up to	Q _{max}
286	bage	SPIN-ON FILTERS	bar	psi	l/min	gpm
289	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
305	MSH	In-line low and medium pressure filter available with single cartridge (CH)	35	508	195	52
311	CLOGGING INDICATORS					

INDEX

		up t	O P _{max}	up to	Q _{max}
age	LOW & MEDIUM PRESSURE FILTERS	bar	psi	l/min	gpm
LMP 110 - 120 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	200	53
LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	330	87
LMP 400 - 401 & 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	740	195
LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	3000	793
LMD 211	In-line duplex medium pressure filter	60	870	330	87
LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	590	156
LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
	Filter elements designed according to DIN 24550				
LDP - LDD	In-line and duplex medium pressure filter	60	870	330	87
LMP 900 - 901	In-line low pressure filter	30	435	2000	528
LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
CLOGGING INDICATORS					
ACCESSORIES					
	LMP 210 - 211 LMP 400 - 401 & 430 - 431 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 LMD 400 - 401 & 431 LMD 951 LDP - LDD LDP - LDD LMP 900 - 901 LMP 902 - 903 CLOGGING INDICATORS	LMP 110 - 120 - 123 MULTIPORTIn-line filter with Multiport design for multiple choice connectionLMP 210 - 211In-line low & medium pressure filter, low flow rateLMP 400 - 401 & 430 - 431In-line low & medium pressure filter, high flow rateLMP 950 - 951In-line filter, available with 2 and up to 6 different headsLMP 952 - 953 - 954In-line low pressure filter specifically designed to be mounted in seriesLMD 211In-line duplex medium pressure filterLMD 400 - 401 & 431In-line duplex low pressure filterLMD 951In-line duplex low pressure filterLMD 951In-line duplex filter, available with 2 up to 6 different headsLDP - LDDIn-line and duplex medium pressure filterLMP 900 - 901In-line low pressure filterLMP 902 - 903In-line filter specifically designed to be mounted in seriesCLOGGING INDICATORSIn-line filter specifically designed to be mounted in series	DageLOW & MEDIUM PRESSURE FILTERSbarLMP 110 - 120 - 123 MULTIPORTIn-line filter with Multiport design for multiple choice connection80LMP 210 - 211In-line low & medium pressure filter, low flow rate60LMP 400 - 401 & 430 - 431In-line low & medium pressure filter, high flow rate60LMP 950 - 951In-line filter, available with 2 and up to 6 different heads30LMP 952 - 953 - 954In-line low pressure filter specifically designed to be mounted in series25LMD 211In-line duplex medium pressure filter60LMD 400 - 401 & 431In-line duplex low pressure filter16LMD 951In-line duplex filter, available with 2 up to 6 different heads16Filter elements designed according to DIN 24550LDP - LDDIn-line and duplex medium pressure filter60LMP 900 - 901In-line low pressure filter30LMP 902 - 903In-line filter specifically designed to be mounted in series20CLOGGING INDICATORSLMP 902 - 903In-line filter specifically designed to be mounted in series20	LMP 110 - 120 - 123 MULTIPORTIn-line filter with Multiport design for multiple choice connection801160LMP 210 - 211In-line low & medium pressure filter, low flow rate60870LMP 400 - 401 & 430 - 431In-line low & medium pressure filter, high flow rate60870LMP 950 - 951In-line filter, available with 2 and up to 6 different heads30435LMP 952 - 953 - 954In-line low pressure filter specifically designed to be mounted in series25363LMD 211In-line duplex medium pressure filter60870LMD 400 - 401 & 431In-line duplex low pressure filter16232LMD 951In-line duplex filter, available with 2 up to 6 different heads16232LMD 951In-line and duplex medium pressure filter60870LMP 900 - 901In-line iow pressure filter60870LMP 902 - 903In-line low pressure filter30435LMP 902 - 903In-line filter specifically designed to be mounted in series20290CLOGGING INDICATORSUCOGGING INDICATORSUCOGGING INDICATORS10	pageLOW & MEDIUM PRESSURE FILTERSbarpsiI/minLMP 110 - 120 - 123 MULTIPORTIn-line filter with Multiport design for multiple choice connection801160200LMP 210 - 211In-line low & medium pressure filter, low flow rate60870330LMP 400 - 401 & 430 - 431In-line low & medium pressure filter, high flow rate60870740LMP 950 - 951In-line filter, available with 2 and up to 6 different heads304352400LMP 952 - 953 - 954In-line low pressure filter specifically designed to be mounted in series253633000LMD 211In-line duplex medium pressure filter60870330LMD 400 - 401 & 431In-line duplex medium pressure filter16232590LMD 400 - 401 & 431In-line duplex low pressure filter60870330LMD 400 - 401 & 431In-line duplex medium pressure filter162321200LMD 951In-line duplex medium pressure filter60870330LDP - LDDIn-line and duplex medium pressure filter60870330LMP 900 - 901In-line low pressure filter304352000LMP 902 - 903In-line filter specifically designed to be mounted in series202903000CLOGGING INDICATORSIn-line filter specifically designed to be mounted in series202903000

			up t	o P _{max}	up to	Q _{max}
(452 p	bage	HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
455	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
463	FMP	Filter high pressure, high flow rate applications	320	4641	475	125
475	FHP	Typical high pressure filter for mobile applications, high flow rate	420	6092	750	198
491	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	250	66
501	FHA 051	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	140	37
509	FHM	High pressure filter with intermediate manifold construction	320	4641	450	119
527	FHB	High pressure for block mounting	320	4641	485	128
541	FHF 325	In-line manifold top mounting	350	5076	500	132
551	FHD	In-line duplex high pressure filter	350	5076	345	91
564	CLOGGING INDICATORS					

			up	to P _{max}	up to	Q _{max}
(572) r	bage	STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
575	FZP	In-line pressure filter with threaded mount	420	6092	150	40
585	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	50	13
595	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
603	FZM	Manifold top mounting	320	4641	70	18
611	FZB	Manifold side mounting	320	4641	75	20
619	FZD	Duplex pressure filter for continuous operation requirements	350	5076	90	24
629	CLOGGING INDICATORS					

634 page

CLOGGING INDICATORS

637 QUICK REFERENCE GUIDE

Introduction

CONTAMINATION MANAGEMENT

INDEX

		Page
1	HYDRAULIC FLUIDS	12
2	FLUIDS CONTAMINATION	12
3	EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	12
4	MEASURING THE SOLID CONTAMINATION LEVEL	13
5	FILTRATION TECHNOLOGIES	16
6	RECOMMENDED CONTAMINATION CLASSES	17
7	TYPES OF FILTERS	17
8	FILTER SIZING PARAMETERS	18
9	APPLICABLE STANDARDS FOR FILTER DEVELOPMENT	18
10	WATER IN HYDRAULIC AND LUBRICATING FLUIDS	19

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces. The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most popular classification criterion divides them into the following families: - MINERAL OILS

Commonly used oil deriving fluids.

- FIRE RESISTANT FLUIDS Fluids with intrinsic characteristics of incombustibility or high flash point.
- SYNTHETIC FLUIDS Modified chemical products to obtain specific optimized features.
- ECOLOGICAL FLUIDS

Synthetic or vegetable origin fluids with high biodegradability characteristics.

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY
- It identifies the fluid's resistance to sliding due to the impact of the particles forming it.
- CINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid density.

Cinematic viscosity varies with temperature and pressure variations.

- VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

- WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

- COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

- HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

(12)

- ANTIOXIDANT STABILITY AND WEAR PROTECTION These features translate into the capacity of a hydraulic oil to avoid corr
- These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.
- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

2 FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.
- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION
- For example rust, slag, metal particles, fibers, rubber particles, paint particles
- or additives
- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

3 EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely, but it can be effectively controlled by appropriate devices.

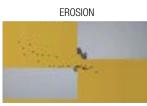
CONTAMINATION IN PRESENCE OF LARGE TOLERANCES

CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- ABRASION OF SURFACES

Cause of leakage through mechanical seals, reduction of system performance, failures.



- SURFACE EROSION

Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.

- ADHESION OF MOVING PARTS Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE Cause of breakdowns and components breakdown.

ADHESION

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

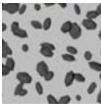
- DECAY OF LUBRICANT PERFORMANCE Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION Cause of worsening in the filterability feature
- ICE CREATION AT LOW TEMPERATURES Cause damage to the surface
- ADDITIVE DEPLETION Free water retains polar additives

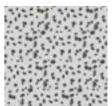
Gaseous contamination mainly results in decay of system performance.

- CUSHION SUSPENSION Cause of increased noise and cavitation.
- FLUID OXIDATION Cause of corrosion acceleration of metal parts.

- MODIFICATION OF FLUID PROPERTIES (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY)
 Cause of system's reduction of efficiency and of control.
 It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.
- MAINTENANCE Maintenance activities, spare parts, machine stop costs
- ENERGY AND EFFICIENCY Efficiency and performance reduction due to friction, drainage, cavitation.

(4) MEASURING THE SOLID CONTAMINATION LEVEL


The level of contamination of a system identifies the amount of contaminant contained in a fluid.


This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.

What is the size of the contaminating particles that we must handle in our hydraulic circuit?

HUMAN HAIR (75 µm)

MINIMUM DIMENSION VISIBLE HUMAN EYES (40 μm)

TYPICAL CONTAMINANT DIMENSION IN A HYDRAULIC CIRCUIT (4÷14 µm)

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment.

To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

Contaminated Membrane

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Automatic Particle Counters (APC).

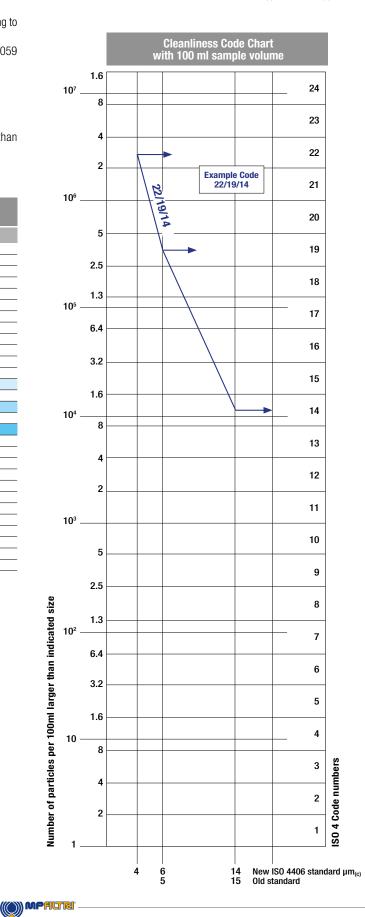
Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations.

NAS 1638 is still used although obsolete.

Classification example according to ISO 4406

The code refers to the number of particles of the same size or greater than 4, 6 or 14 μm in a 1 ml fluid.


Class	Number of particles per ml			
	Over	Up to		
28	1 300 000	2 500 000		
27	640 000	1 300 000		
26	320 000	640 000		
25	160 000	320 000		
24	80 000	160 000		
23	40 000	80 000		
22	20 000	40 000		
21	10 000	20 000		
20	5 000	10 000		
19	2 500	5 000		
18	1 300	2 500		
17	640	1 300		
16	320	640		
15	160	320		
14	80	160		
13	40	80		
12	20	40		
11	10	20		
10	5	10		
9	2.5	5		
8	1.3	2.5		
7	0.64	1.3		
6	0.32	0.64		
5	0.16	0.32		
4	0.08	0.16		
3	0.04	0.08		
2	0.02	0.04		
1	0.01	0.02		
0	0	0.01		

0	
> $4 \mu m_{(c)} = 350$ particles	
$> 6 \mu m_{(c)} = 100 \text{ particles}$	
$> 14 \ \mu m_{(c)} = 25 \ particles$	
16/14/12	

ISO 4406:2017 Cleanliness Code System

Microscope counting examines the particles differently to APCs and the code is given with two scale numbers only.

These are at 5 μ m and 15 μ m equivalent to the 6 μ m_(c) and 14 μ m_(c) of APCs.

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - SAE AS 4059-1 and SAE AS 4059-2

Classification example according to SAE AS 4059-1 and SAE AS 4059-2

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

It can be made a differential measurement (Table 1) or a cumulative measurement (Table 2)

Table 1 - Class for differential measurement

Class	Dimension of contaminant					
	6÷14 µm _(c)	14÷21 µm _(c)	$21\div38\ \mu m_{(c)}$	$38{\div}70\;\mu m_{(c)}$	>70 µm _(c)	
00	125	22	4	1	0	
0	250	44	8	2	0	
1	500	89	16	3	1	
2	1 000	178	32	6	1	
3	2 000	356	63	11	2	
4	4 000	712	126	22	4	
5	8 000	1 425	253	45	8	
6	16 000	2 850	506	90	16	
7	32 000	5 700	1 012	180	32	
8	64 000	11 400	2 025	360	64	
9	128 000	22 800	4 050	720	128	
10	256 000	45 600	8 100	1 440	256	
11	512 000	91 200	16 200	2 880	512	
12	1 024 000	182 400	32 400	5 760	1 024	

6÷14 µm _(c) =	15 000 particles
14÷21 µm _(c) =	2 200 particles
21÷38 µm _(c) =	200 particles
38÷70 µm _(c) =	35 particles
$> 70 \ \mu m_{(c)} =$	3 particles
Class 6	

Table 2 - (lass for	cumulative	measurement

Class	Dimension of contaminant							
	>4 µm _(C) A	>6 µm _(c) B	${}^{>14\mu m_{(c)}}_C$	$>21 \ \mu m_{(c)}$ D	$>38 \ \mu m_{(c)}$	$>70 \ \mu m_{(c)}$ F		
000	195	76	14	3	1	0		
00	390	152	27	5	1	0		
0	780	304	54	10	2	0		
1	1 560	609	109	20	4	1		
2	3 120	1 217	217	39	7	1		
3	6 250	2 432	432	76	13	2		
4	12 500	4 864	864	152	26	4		
5	25 000	9 731	1 731	306	53	8		
6	50 000	19 462	3 462	612	106	16		
7	100 000	38 924	6 924	1 224	212	32		
8	200 000	77 849	13 849	2 449	424	64		
9	400 000	155 698	27 698	4 898	848	128		
10	800 000	311 396	55 396	9 796	1 696	256		
11	1 600 000	622 792	110 792	19 592	3 392	512		
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024		

> $4 \mu m_{(c)} = 45000$ particles
> $6 \mu m_{(c)} = 15000$ particles
$> 14 \mu m_{(c)} = 1500 \mu m_{(c)}$
01
$> 21 \ \mu m_{(c)} = 250 \ particles$
$> 38 \mu m_{(c)} = 15 \text{particles}$
70 0 11 1
$> 70 \ \mu m_{(c)} = 3 \ particle$
Class from 2F to 4E

- CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

The coding system defines the maximum numbers permitted of 100ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406:1999. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri APC's.

The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket.

Size Range Classes	(in	microns)
--------------------	-----	---------	---

Maximum Contamination Limits per 100 ml								
Class	5 5÷15 15÷25 25÷50 50÷100 >10							
00	125	22	4	1	0			
0	250	44	8	2	0			
1	500	89	16	3	1			
2	1 000	178	32	6	1			
3	2 000	356	63	11	2			
4	4 000	712	126	22	4			
5	8 000	1 425	253	45	8			
6	16 000	2 850	506	90	16			
7	32 000	5 700	1 012	180	32			
8	64 000	11 400	2 025	360	64			
9	128 000	22 800	4 050	720	128			
10	256 000	45 600	8 100	1 440	256			
11	512 000	91 200	16 200	2 880	512			
12	1 024 000	182 400	32 400	5 760	1 024			

$5 \div 15 \mu m_{(c)} = 4$	2 000 particles
15÷25 µm _(c) =	2 200 particles
25÷50 μm _(c) =	150 particles
50÷100 µm _(c) =	18 particles
> 100 µm _(c) =	3 particles
Class NAS 8	

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407

The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope.

The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

COMPARISON PHOTOGRAPH'S 1 graduation $= 10 \mu m$

Class 16/14/11 SAE AS4059E Table 1 Class 5 Class 5 SAE AS4059E Table 2 Class 6A/5B/5C

15

Class 22/20/17 Class 11 Class 11 Class 12A/11B/11C

Introduction

\sim		
- 111	MPALT	(4
١١		_

ISO 4406:1999

NAS 1638

- CLEANLINESS CODE COMPARISON

Although ISO 4406:2017 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406:2017	SAE AS4059 Table 2	SAE AS4059 Table 1	NAS 1638
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9B	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14 / 12 / 09	4A / 3B / 3C	3	3

5 FILTRATION TECHNOLOGIES

Various mechanisms such as mechanical stoppage, magnetism, gravimetric deposit, or centrifugal separation can be used to reduce the level of contamination.

The mechanical stoppage method is most effective and can take place in two ways:

- SURFACE FILTRATION

It is by direct interception. The filter prevents particles larger than the pores from continuing in the plant / system. Surface filters are generally manufactured with metal canvases or meshes.

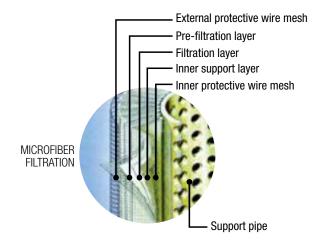
- DEPTH FILTERING

Filters are constructed by fiber interlacing. Such wraps form pathways of different shapes and sizes in which the particles remain trapped when they find smaller apertures than their diameter.

Depth filters are generally produced with papers impregnated with phenolic resins, metal fibers or inorganic fibers.

In inorganic fiber filtration, commonly called microfibre, the filtering layers are often overlapped in order to increase the ability to retain the contaminant.

WIRE MESH FILTRATION


PAPER FILTRATION

())) MPALTRI

The filtration efficiency of metallic mesh filtrations is defined as the maximum particle size that can pass through the meshes of the filtering grid.

The efficiency of microfibre and paper filtration ($\mathcal{B}_{X(c)}$) is defined through a lab test called Multipass Test. The efficiency value ($\mathcal{B}_{X(c)}$) is defined as the ratio between the number of particles of certain dimensions detected upstream and downstream of the filter.

Upstream particles number > X μ m_(c)

 $\frac{1}{\text{Downstream particles number} > X \ \mu m_{(c)}} = B_{X(c)}$

Value ($\beta_{x(c)}$)	2	10	75	100	200	1000
Efficiency	50%	90%	98.7%	99%	99.5%	99.9%

Test conditions, such as type of fluid to be used (MIL-H-5606), type of contaminant to be used (ISO MTD), fluid viscosity, test temperature, are determined by ISO 16889.

In addition to the filtration efficiency value during the Multipass test, other important features, such as filtration stability (β stability) and dirt holding capacity (DHC), are also tested.

Poor filtration stability is the cause of the filtering quality worsening as the filter life rises. Low dirt holding capacity causes a reduction in the life of the filter.

Filtration ISO Standard Comparison					
$\beta_{\rm X(C)} > 1000$	MP Filtri				
ISÓ 16889	ISO 4572	Filter media code			
5 μm _(c)	3 µm	A03			
7 µm _(c)	6 µm	A06			
10 µm _(c)	10 µm	A10			
16 µm _(c)	18 µm	A16			
21 µm _(c)	25 µm	A25			

(6) RECOMMENDED CONTAMINATION CLASSES

Any are the nature and the properties of fluids, they are inevitably subject to contamination. The level of contamination can be managed by using special components called filters.

Hydraulic components builders, knowing the problem of contamination, recommend the filtration level appropriate to the use of their products.

Example of recommended contamination levels for pressures below 140 bar.

Piston pumps	_					
with fixed flow rate	•					
Piston pumps			•			
with variable flow rate			•			
Vane pumps						
with fixed flow rate		•				
Vane pumps			•			
with variable flow			•			
Engines	•					
Hydraulic cylinders	•					
Actuators					٠	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					٠	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	β _{20(c)}	B _{15(c)}	B _{10(c)}	β _{7(C)}	$\beta_{7(C)}$	B _{5(c)}
filtration $B_{x(c)\geq 1.000}$	>1000	>1000	>1000	>1000	>1000	>1000

The common classification of filters is determined by their position in the plant.

7 TYPES OF FILTERS

Suction filters

They are positioned before the pump and are responsible for protecting the pump from dirty contaminants. It also provides additional flow guidance to the pump suction line.

Being subject to negligible working pressures are manufactured with simple and lightweight construction.

They are mainly produced with gross grade surface filtrations, mainly $60 \div 125 \,\mu$ m. They can be equipped with a magnetic column for retaining ferrous particles. They are generally placed under the fluid head to take advantage of the piezometric thrust of the fluid and reduce the risk of cavitation.

There are two types of suction filters:

- IMMERSION FILTERS

Simple filter element screwed on the suction pipe

- FILTERS WITH CONTAINER

Container filters that are more bulky, but provide easier maintenance of the tank

Delivery (or Pressure) filters

They are positioned between the pump and most sensitive regulating and controlling components, such as servo valves or proportional valves, and are designed to ensure the class of contamination required by the components used in the circuit.

Being subjected to high working pressures are manufactured with more robust and articulated construction. In particular situations of corrosive environments or aggressive fluids can be made of stainless steel.

They are mainly produced with filtering depths of 3 \div 25 $\mu m.$

They can be manufactured with in-line connections, with plate or flange connections or directly integrated into the circuit control blocks / manifolds. They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the plant / system is in operation without interruption of the working cycle.

Return filters

They are positioned on the return line to the tank and perform the task of filtering the fluid from particles entering the system from the outside or generated by the wear of the components.

They are generally fixed to the reservoir (for this reason also called top tank mounted), positioned semi-immersed or completely immersed.

The positioning of the return filters must guarantee in all operating conditions that the fluid drainage takes place in immersed condition; this is to avoid creating foams in the tank that can cause malfunctions or cavitation in the pumps.

For the sizing of the return filters, account must be taken of the presence of accumulators or cylinders that can make the return flow considerably greater than the pump suction flow rate.

Being subject to contained working pressures are manufactured with simple and lightweight construction.

Normally it is possible to extract the filter element without disconnecting the filter from the rest of the system.

Combined filters

They are designed to be applied to systems with two or more circuits. They are commonly used in hydrostatic transmission machines where they have a dual filtration function of the return line and suction line of the hydrostatic transmission pump.

The filter is equipped with a valve that keeps the 0.5 bar pressure inside the filter. A portion of the fluid that returns to the tank is filtered by the return filter element, generally produced with absolute filtration, and returns to the transmission booster pump.

Only excess fluid returns to the tank through the valve.

The internal pressure of the filter and the absolute filtration help to avoid the cavitation phenomenon inside the pump.

Off-line filters

They are generally used in very large systems / plants, placed in a closed circuit independent from the main circuit. They remain in operation regardless of the operation of the main circuit and are crossed by a constant flow rate.

They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the unit is in operation without interruption of the work cycle.

Venting filters

During the operation of the plants, the fluid level present in the reservoir changes continuously.

The result of this continuous fluctuation is an exchange of air with the outside environment.

The venting filter function, positioned on the tank, is to filter the air that enters the tank to compensate for fluid level variations.

(8) FILTER SIZING PARAMETERS

The choice of the filter system for an hydraulic system is influenced by several factors.

It is necessary to consider the characteristics of the various components present in the plant and their sensitivity to contamination.

It is also necessary to consider all the tasks that the filter will have to do within the plant:

- FLUID PROTECTION FROM CONTAMINATION
- PROTECTION OF OLEODYNAMIC COMPONENTS SENSITIVE TO CONTAMINATION
- PROTECTION OF OLEODYNAMIC PLANTS FROM ENVIRONMENTAL WASTE
- PROTECTION OF OLEODYNAMIC PLANTS FROM CONTAMINATION CAUSED BY COMPONENTS' FAILURES

The advantages of proper positioning and sizing of the filters are

- MORE RELIABILITY OF THE SYSTEM
- LONGER LIFE OF THE FLUID COMPONENTS
- REDUCTION OF STOP TIME
- REDUCTION OF FAILURE CASUALITIES

Each hydraulic filter is described by general features that identify the possibility of use in different applications.

• MAXIMUM WORKING PRESSURE (Pmax)

The maximum working pressure of the filter must be greater than or equal to the pressure of the circuit section in which it will be installed.

• PRESSURE DROP (△P)

The pressure drop depends on a number of factors, such as the working circuit temperature, the fluid viscosity, the filter element cleaning condition.

• WORKING TEMPERATURE (T)

The working temperature deeply affect the choice of materials. Excessively high or low temperatures may adversely affect the strength of the materials or the characteristics of the seals.

• FILTRATION EFFICIENCY (%) / FILTRATION RATIO (β_{x(c)})

Filtration efficiency is the most important parameter to consider when selecting a filter.

When choosing the filtration performances, the needs of the most sensitive components in the system must be considered.

• FLUID TYPE

The type of fluid influences the choice of filters in terms of compatibility and viscosity. It is always mandatory to check the filterability.

• PLACEMENT IN THE PLANT

The position of the filter in the system conditions the efficiency of all filter performances.

9 APPLICABLE STANDARDS FOR FILTER DEVELOPMENT

In order to obtain unique criteria for development and verification of the filters performance, specific regulations for the filters and filter elements testing have been issued by ISO. These norms describe the target, the methodology, the conditions and the presentation methods for the test results.

ISO 2941

Hydraulic fluid power -- Filter elements -- Verification of collapse/burst pressure rating

This Standard describes the method for testing the collapse / burst resistance of the filter elements.

The test is performed by crossing the contaminated fluid filter element at a predefined flow rate. The progressive clogging of the filter element, determined by contamination, causes an increase in differential pressure.

ISO 2942

Hydraulic fluid power -- Filter elements -- Verification of fabrication integrity and determination of the first bubble point

This Standard describes the method to verify the integrity of the assembled filter elements.

It can be used to verify the quality of the production process or the quality of the materials by verifying the pressure value of the first bubble point.

ISO 2943

Hydraulic fluid power -- Filter elements -- Verification of material compatibility with fluids

This Standard describes the method to verify the compatibility of materials with certain hydraulic fluids.

The test is carried out by keeping the element (the material sample) immersed in the fluid under high or low temperature conditions for a given period of time and verifying the retention of the characteristics.

ISO 3723

Hydraulic fluid power -- Filter elements -- Method for end load test

This Standard describes the method for verifying the axial load resistance of the filter elements.

After performing the procedure described in ISO 2943, the designed axial load is applied to the filter element. To verify the test results, then the test described in ISO 2941 is performed.

ISO 3968

Hydraulic fluid power -- Filters -- Evaluation of differential pressure versus flow characteristics

This Standard describes the method for checking the pressure drop across the filter.

The test is carried out by crossing the filter from a given fluid and by detecting upstream and downstream pressures.

Some of the parameters defined by the Standard are the fluid, the test temperature, the size of the tubes, the position of the pressure detection points.

ISO 16889

())) MPALTRI

Hydraulic fluid power -- Filters -- Multi-pass method for evaluating filtration performance of a filter element

This Standard describes the method to check the filtration characteristics of the filter elements.

The test is performed by constant introduction of contaminant (ISO MTD). The characteristics observed during the test are the filtration efficiency and the dirty holding capacity related to the differential pressure.

ISO 23181

Hydraulic fluid power -- Filter elements -- Determination of resistance to flow fatigue using high viscosity fluid

This Standard describes the method for testing the fatigue resistance of the filter elements.

The test is carried out by subjecting the filter to continuous flow variations, thus differential pressure, using a high viscosity fluid.

ISO 11170

Hydraulic fluid power -- Sequence of tests for verifying performance characteristics of filter elements

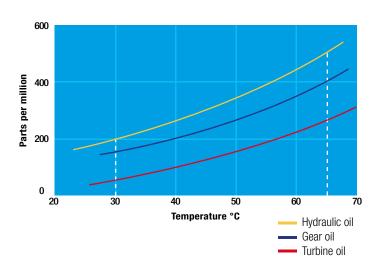
The Standard describes the method for testing the performance of filter elements. The protocol described by the regulations provides the sequence of all the tests described above in order to verify all the working characteristics (mechanical, hydraulic and filtration).

ISO 10771-1

Hydraulic fluid power -- Fatigue pressure testing of metal pressure-containing envelopes -- Test method

This Standard describes the method to check the resistance of the hydraulic components with pulsing pressure.

It can be applied to all metal components (excluding tubes) subject to cyclic pressure used in the hydraulic field.

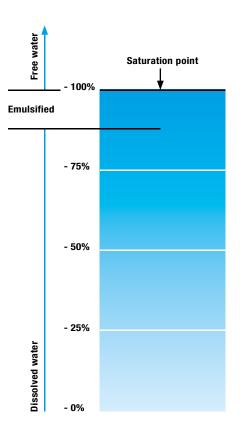

10 WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@ 40° C) which it can support without adverse consequences.

Once the water content exceeds about 300ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.


Saturation Levels

Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

Hydraulic oil @ 30° C = 200ppm = 100% saturation Hydraulic oil @ 65° C = 500ppm = 100% saturation

Water absorber

Water is present everywhere, during storage, handling and servicing.

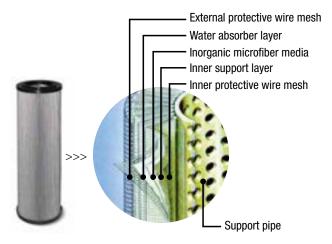
MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.

MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 μ m (therefore identified with media designation WA025, providing absolute filtration of solid particles to $B_{\rm X(C)} = 1000$.

Absorbent media is made by water absorbent fibres which increase in size during the absorption process.

Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).

Filter Media


Absorber media layer

Fabric that absorbs water

The Filter Media has absorbed water

By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

Product availability:

LOW & MEDIUM PRESSURE FILTERS - LMP Series

LMP 210	LMP 900
LMP 211	LMP 901
LMP 400	LMP 902
LMP 401	LMP 903
LMP 430	LMP 950
LMP 431	LMP 951

INDEX

	Page
CALCULATION	23
CORRECTIVE FACTOR	24

THE CORRECT FILTER SIZING HAVE TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

For example, the maximum total pressure drop allowed by a New and clean return filter have to be in the range 0.4 \div 0.6 bar.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³); all the graphs in the catalogue are referred to mineral oil with density of 0.86 kg/dm³.

The filter element pressure drop Δpe is proportional to its viscosity (mm²/s), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt).

Sizing data for single filter element, head at top

- Δpc = Filter housing pressure drop [bar]
- $\Delta pe =$ Filter element pressure drop [bar]

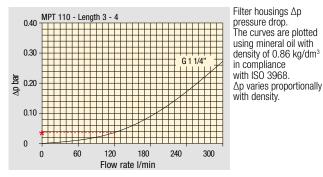
 $\mathbf{Y} = \text{Corrective factor Y}$ (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media $\mathbf{Q} = \text{flow rate (l/min)}$

V1 reference oil viscosity = $30 \text{ mm}^2/\text{s}$ (cSt)

V2 = operating oil viscosity in mm²/s (cSt)

Filter element pressure drop calculation with an oil viscosity different than 30 $\rm mm^2/s$ (cSt)

 $\label{eq:phi} \begin{array}{l} \Delta pe = Y: 1000 \ x \ Q \ x \ (V2:V1) \\ \Delta p \ Tot. = \Delta pc \ + \ \Delta pe \end{array}$


Verification formula Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Application	Range (bar)
Suction filters	0.08 ÷ 0.10
Return filters	$0.4 \div 0.6$
	$0.4 \div 0.6$ return lines
	$0.3 \div 0.5$ lubrication lines
Low & Medium Pressure filters	$0.3 \div 0.4$ off-line in power systems
	$0.1 \div 0.3$ off-line in test benches
	$0.4 \div 0.6$ over-boost
High Pressure filters	0.8 ÷ 1.5
Stainless Steel filters	0.8 ÷ 1.5

Generic filter calculation example Application data: Tank top return filter Pressure Pmax = 10 bar Flow rate Q = 120 l/min Viscosity V2 = 46 mm²/s (cSt) Oil density = 0.86 kg/dm³ Required filtration efficiency = 25 μ m with absolute filtration With bypass valve and G 1 1/4" inlet connection

$\Delta pe = (2.00: 1000) \times 120 \times (46: 30) = 0.37 \text{ bar}$

Filter element				lute filt H Series	Nominal filtration N Series				
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
Return filter	S								
		74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00
	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82

$\Delta p \text{ Tot.} = 0.03 + 0.37 = 0.4 \text{ bar}$

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters. In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

FILTER SIZING Corrective factor

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity 30 mm²/s

Return filters

Filter element	t			l ute filtr H Series		Nominal filtration N Series			
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
MF 020	1 2	74.00 29.20	50.08 24.12	20.00 8.00	16.00 7.22	9.00 5.00	6.43 3.33	5.51 2.85	4.40 2.00
	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100 MFX 100	2	17.33 10.25	12.50 9.00	6.86 3.65	5.70 3.33	4.00 2.50	3.05 1.63	2.47 1.32	1.10 0.96
	4	6.10	9.00 5.40	2.30	2.20	2.50	1.19	0.96	0.90
MF 180 MFX 180	1	3.67 1.69	3.05 1.37	1.64 0.68	1.56 0.54	1.24 0.51	1.18 0.43	1.06 0.39	0.26 0.12
MF 190 MFX 190	2	1.69	1.37	0.60	0.49	0.44	0.35	0.31	0.11
MF 400	1	3.20	2.75	1.39	1.33	1.06	0.96	0.87	0.22
MFX 400		2.00	1.87	0.88	0.85	0.55	0.49	0.45	0.13
ME 760	3	1.90	1.60	0.63	0.51	0.49	0.39	0.35	0.11
MF 750 MFX 750	1	1.08	0.84	0.49	0.36	0.26	0.21	0.19	0.06
MLX 250	12	3.00	3.04	1.46	1.25	1.17	-	-	M25 0.20
MLX 660	2	1.29	1.26	0.52	0.44	0.38	-	-	M25 0.10
CU 025		78.00	48.00	28.00	24.00	9.33	9.33	8.51	1.25
CU 040		25.88	20.88	10.44	10.00	3.78	3.78	3.30	1.25
CU 100		15.20	14.53	5.14	4.95	2.00	2.00	0.17	1.10
CU 250		3.25	2.55	1.55	1.35	0.71	0.71	0.59	0.25
CU 630		1.96	1.68	0.85	0.72	0.42	0.42	0.36	0.09
CU 850		1.06	0.84	0.42	0.33	0.17	0.17	0.13	0.04
	1	19.00	17.00	6.90	6.30	4.60	2.94	2.52	1.60
MR 100	2 3	11.70 7.80	10.80 6.87	4.40 3.70	4.30 3.10	3.00 2.70	2.94 2.14	2.52 1.84	1.37
	4	5.50	4.97	2.60	2.40	2.18	1.72	1.47	1.34
	5	4.20	3.84	2.36	2.15	1.90	1.60	1.37	1.34
	1	5.35	4.85	2.32	1.92	1.50	1.38	1.20	0.15
MR 250	2	4.00	3.28	1.44	1.10	1.07	0.96	0.83	0.13
	3 4	2.60 1.84	2.20 1.56	1.08 0.68	1.00 0.56	0.86 0.44	0.77 0.37	0.64 0.23	0.12
	1	3.10	2.48	1.32	1.14	0.92	0.83	0.73	0.09
	2	2.06	1.92	0.82	0.76	0.38	0.33	0.27	0.08
MR 630	3	1.48	1.30	0.60	0.56	0.26	0.22	0.17	0.08
	4 5	1.30 0.74	1.20 0.65	0.48 0.30	0.40 0.28	0.25 0.13	0.21 0.10	0.16 0.08	0.08 0.04
	1	0.60	0.43	0.34	0.25	0.13	0.12	0.09	0.03
MR 850	2	0.37	0.26	0.23	0.21	0.11	0.08	0.07	0.03
	3	0.27	0.18	0.17	0.17	0.05	0.04	0.04	0.02

Return / Suction filters

Filter element	Absolute filtration						
Туре	A10	A16	A25				
1 RSX 116 2	5.12 2.22	4.33 1.87	3.85 1.22				
RSX 165 2 3	2.06 1.24 0.94	1.75 1.05 0.86	1.46 0.96 0.61				

Filter elemer	nt	Absolute filtration N Series							
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
	1	16.25	15.16	8.75	8.14	5.87	2.86	2.65	0.14
CU 110	2	12.62 8.57	10.44 7.95	6.11 5.07	6.02 4.07	4.16 2.40	1.60 1.24	1.49	0.12 0.11
	4	5.76	4.05	2.80	2.36	1.14	0.91	0.85	0.05

Low & Medium pressure filters

Filter eleme	nt	Absolute filtration N-W Series N Series					ation		
Туре		A03	A06	A10	A16	A25	P10	P25	M25
CU 110	1 2 3 4	16.25 12.62 8.57 5.76	15.16 10.44 7.95 4.05	8.75 6.11 5.07 2.80	8.14 6.02 4.07 2.36	5.87 4.15 2.40 1.14	2.86 1.60 1.24 0.91	2.65 1.49 1.15 0.85	0.14 0.12 0.11 0.05
CU 210	1 2 3	5.30 3.44 2.40	4.80 2.95 1.70	2.00 1.24 0.94	1.66 1.09 0.84	1.32 0.70 0.54	0.56 0.42 0.33	0.43 0.35 0.23	0.12 0.09 0.05
DN ()16)25)40	7.95 5.00 3.13	7.20 4.53 2.66	3.00 1.89 1.12	2.49 1.57 0.98	1.98 1.25 0.63	0.84 0.53 0.38	0.65 0.41 0.32	0.18 0.11 0.08
CU 400	2 3 4 5 6	3.13 2.15 1.60 1.00 0.82	2.55 1.70 1.28 0.83 0.58	1.46 0.94 0.71 0.47 0.30	1.22 0.78 0.61 0.34 0.27	0.78 0.50 0.40 0.20 0.17	0.75 0.40 0.34 0.24 0.22	0.64 0.34 0.27 0.19 0.18	0.19 0.10 0.08 0.06 0.05
CU 900	1	0.86	0.63	0.32	0.30	0.21	-	-	0.05
CU 950	2	1.03 0.44	0.80 0.40	0.59 0.27	0.40 0.18	0.26 0.15	-	-	0.05 0.02
MR 630	7	0.88	0.78	0.36	0.34	0.16	0.12	0.96	0.47

Stainless steel high pressure filters

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity 30 mm²/s

Nominal filtration

0.38

0.36

0.35

High pressure filters

Filter elemen	t		Nominal filtration N Series				
Туре		A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050	3	17.37	16.25	8.90	7.18	3.63	1.25
	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	58.50	43.46	23.16	19.66	10.71	1.28
HP 065	2	42.60	25.64	16.22	13.88	7.32	1.11
	3	20.50	15.88	8.18	6.81	3.91	0.58
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01
	1	17.53	15.91	7.48	6.96	5.94	1.07
HP 150	2	8.60	8.37	3.54	3.38	3.15	0.58
_	3	6.53	5.90	2.93	2.79	2.12	0.49
	1	10.88	9.73	5.02	3.73	2.54	1.04
HP 320	2	4.40	3.83	1.75	1.48	0.88	0.71
NF 320	3	2.75	2.11	1.05	0.87	0.77	0.61
	4	2.12	1.77	0.98	0.78	0.55	0.47
	1	4.44	3.67	2.30	2.10	1.65	0.15
	2	3.37	2.77	1.78	1.68	1.24	0.10
HP 500	3	2.22	1.98	1.11	1.09	0.75	0.08
	4	1.81	1.33	0.93	0.86	0.68	0.05
	5	1.33	1.15	0.77	0.68	0.48	0.04

Filter element	t		Abs	olute filtra N Series	tion	
Туре		A03	A06	A10	A16	A25
HP 011	1	332.71	250.07	184.32	152.36	128.36
	2	220.28	165.56	74.08	59.13	37.05
	3	123.24	92.68	41.48	33.08	20.72
	4	77.76	58.52	28.37	22.67	16.17
HP 039	2	70.66	53.20	25.77	20.57	14.67
	3	36.57	32.28	18.00	13.38	8.00
	4	26.57	23.27	12.46	8.80	5.58
HP 050	1	31.75	30.30	13.16	12.3	7.29
	2	24.25	21.26	11.70	9.09	4.90
	3	17.37	16.25	8.90	7.18	3.63
	4	12.12	10.75	6.10	5.75	3.08
	5	7.00	6.56	3.60	3.10	2.25
HP 135	1	20.33	18.80	9.71	8.66	4.78
	2	11.14	10.16	6.60	6.38	2.22
	3	6.48	6.33	3.38	3.16	2.14

Filter elemen	t	Absolute filtration H - U Series									
Туре		A03	A06	A10	A16	A25					
HP 011	1	424.58	319.74	235.17	194.44	163.78					
	2	281.06	211.25	94.53	75.45	47.26					
	3	130.14	97.50	43.63	34.82	21.81					
	4	109.39	82.25	36.79	29.37	18.40					
HP 039	2	73.00	57.00	28.00	24.00	17.20					
	3	40.90	36.33	21.88	18.80	11.20					
	4	31.50	28.22	17.22	9.30	6.70					
HP 050	1	47.33	34.25	21.50	20.50	14.71					
	2	29.10	25.95	14.04	10.90	5.88					
	3	20.85	19.50	10.68	8.61	4.36					
	4	14.55	12.90	7.32	6.90	3.69					
	5	9.86	9.34	6.40	4.80	2.50					
HP 135	1	29.16	25.33	13.00	12.47	5.92					
	2	14.28	11.04	7.86	7.60	4.44					
	3	8.96	7.46	4.89	4.16	3.07					

Suction filters

1

2

3

3.65

2.03

1.84

2.95

1.73

1.42

Filter element

Туре

HF 320

Filter element		Nominal filtration N Series					
Туре	P10	P25					
SF 250	65	21					

Absolute filtration

2.80

1.61

1.32

1.80

1.35

1.22

0.90

0.85

0.80

FILTER SIZING Selection Software

Step (1) Select "FILTERS" MPFILTRI **Step** (2) Choose filter group (Return Filter, Pressure Filter, etc.) Filter gr a e 1/6 MPFILTRI E Filters Filter group Filter g FilterSizing Aluminium-1 1/2" - 2 1/2 SUCTION FILTER RETURN FILTER PRESSURE FILTE IN-LINE FILTER SPIN-ON FILTER 116 Filter Groups 224.8 116 (()) MPALTRI 850 224.83 (()) MPFILTRI

Step (3) Choose filter type (MPF, MPT, etc.) in function of the max working pressure and the max flow rate

Trawing Graphic

Step (7) PDF Download PDF Datasheet "Report.aspx" pushing the button "Drawing"

(()) MPALTRI

Introduction

Stainless steel high pressure filters are used as process filters to protect individual valves or the entire hydraulic circuit from contamination as per ISO 4406. 6 versions are available with operating pressures ranging from 320 bar up to 1000 bar.

A range of products is available to resolve all filter mounting problems, in the following configurations:

- FZP In-line pressure filter with threaded mount
- FZH In-line pressure filter with threaded mount for higher pressure
- FZX In-line pressure filter with threaded mount up to 1000 bar
- FZB Manifold side mounting
- FZM Manifold top mounting
- FZD Duplex pressure filter for continuous operation requirements

FZ stainless steel filters are specifically designed

- for applications in the:
- Process engineering
- Water hydraulics
- Offshore technology
- Marine technology
- High pressure hydraulics
- Any application in harsh or aggressive environment

For the proper corrective factor Y see chapter at page 25

Stainless steel high pressure filters

FZP	page	575
FZH		585
FZX		595
FZM		603
FZB		611
FZD		619
INDICATORS		629

Maximum working pressure up to 42 Mpa (420 bar) - Flow rate up to 150 l/min

GENERAL INFORMATION

Description

Technical data

In-line

Maximum working pressure up to 42 Mpa (420 bar) Flow rate up to 150 l/min

FZP is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- -1 1/4" female threaded connections, for a maximum flow rate of 150 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- **Optional FPM** series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZP filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar. Element series "R":

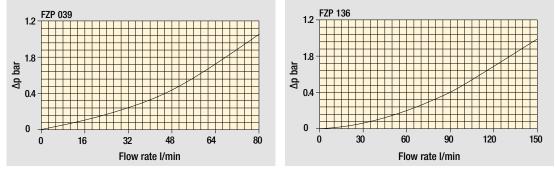
- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned Steel - Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic



Weights [kg] and volumes [dm³]

Filter series	Weights [kg]								Volumes [dr	n³]	
	Length						Length				
FZP 039		-	4.5	5.1	5.6			-	0.19	0.26	0.34
FZP 136		8.3	10.2	11.5	-			0.45	0.78	1.00	-

Pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Flow rates [l/min]

		Filter element design - R Series						Filter element design - S-U Series					
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25		
	2	19	25	43	50	59	19	23	41	45	55		
FZP 039	3	34	37	53	62	74	31	34	48	52	66		
	4	42	46	63	72	81	38	41	55	71	78		
	1	63	67	102	108	136	47	53	87	89	127		
FZP 136	2	95	100	122	123	159	81	95	113	115	138		
	3	122	124	148	150	160	106	116	135	141	151		

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

Please, contact our Sales Department for further additional information.

FZP 039 • . • • . . FZP 136 OUT OUT OUT OUT OUT OUT D.I. D.I. D.I. D.I. D.I. D.I.

(()) MPALTRI

Hydraulic symbols

ZP FZP039

Designation & Ordering code

	COMPLETE FILTER		
Series and size	Configuration example: FZP039	2 B F	B 2 A03 U P01
FZP039			
l ouwth	-		
Length 2 3 4			
	-		
Valves	L		
S Without bypass	_		
B With bypass 6 bar	_		
T With check valve, without bypass	_		
D With check valve, with bypass 6 bar	_		
V With reverse flow, without bypass	_		
Z With reverse flow, with bypass 6 bar	_		
Seals			
A NBR			
V FPM	-		
F MFQ	-		
Connections	-		
A G 1/2"	·		
B 1/2" NPT	-		
C SAE 8 - 3/4" - 16 UNF	-		
	-		
Connections for differential indicators	I		
1 Without	_		
2 With connection	_		
Filtration rating (filter media)	l .		
A03 Inorganic microfiber 3 µm			
A06 Inorganic microfiber 6 µm	-		
A10 Inorganic microfiber 10 µm	-	Valves	
A16 Inorganic microfiber 16 µm	Element ∆p	S B T D	V Z Execution
A25 Inorganic microfiber 25 µm	R 20 bar	• •	P01 MP Filtri standard
	S 210 bar	• •	Pxx Customized
	U 210 bar, stainless steel filter e	element • • •	• •

FILTER ELEMENT

Element series and size				Configuration exa	nple:	HP039		2	A03		F	U P01
HP039												
Element length												
2 3 4												
Filtration rating (filter media)												
A03 Inorganic microfiber 3 µm												
A06 Inorganic microfiber 6 µm												
A10 Inorganic microfiber 10 µm												
A16 Inorganic microfiber 16 µm												
A25 Inorganic microfiber 25 µm												
	_											
						Val	ves					
	Seals		Element ∆p		S	BT	D	V	Z	xeci	ution	
	A NE	BR I	R 20 bar			•	٠		• <u>P</u>	01	MP Fi	ltri standard
	V FF	M S	S 210 bar		•	٠		•	P	XX	Custo	mized
	F M	FQ I	J 210 bar, stainless	steel filter element	٠	• •	•	•	•			

		ACCES	SORIES
Diffe	rential indicators	page	
DEH	Hazardous area electronic differential indicator	630	DVX
DEX	Electrical differential indicator	631	DVY
DLX	Electrical / visual differential indicator	631	
Addi	tional features	page	
X2	Plug	632	

	page
DVX Visual differential indicator	631
DVY Visual differential indicator	632

Stainless steel high pressure filters 578-

IN-LINE

FZP039 FZP

Dimensions

FZP FZP136 Designation & Ordering code

	COMPLE	TE FILTER							
Series and size	Configuration exam	ple: FZP136	1	B	A	B	6	403	R P01
FZP136	-						\square		
Length									
1 2 3	-								
Valves									
S Without bypass	_								
B With bypass 6 bar	-								
Seals	l								
A NBR	-								
V FPM F MFQ	_								
	-								
Connections									
A G 3/4" B 3/4" NPT	_								
C SAE 12 - 1 1/16" - 12 UN	_								
D G1"	-								
E 1" NPT	-								
F SAE 16 - 1 5/16" - 12 UN	-								
G G 1 1/4"	-								
H 1 1/4" NPT	-								
SAE 20 - 1 5/8" - 12 UN	-								
Connections for differential indicators									
1 Without 6 With two connections on both sides	-								
	-								
Filtration rating (filter media) A03 Inorganic microfiber 3 µm									
A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm	-								
A10 Inorganic microfiber 10 μm	-								
A16 Inorganic microfiber 16 µm	Elo	nent ∆p				Valves	Ever	ution	
A25 Inorganic microfiber 25 µm	- R	20 bar				5 <u></u>	P01		ri standard
	S	210 bar				•	Pxx	Custor	
	U	210 bar, stainl	ess steel	filter el	ement	••			

	FILIER ELEMENT	
Element series and size	Configuration example:	HP135 1 A03 A R P01
HP135		
Element length		
1 2 3		
Filtration rating (filter media)		
A03 Inorganic microfiber 3 µm		
AO6 Inorganic microfiber 6 µm		
A10 Inorganic microfiber 10 µm		
A16 Inorganic microfiber 16 µm		
A25 Inorganic microfiber 25 µm		Valves
	Seals Element ∆p	S B Execution
	A NBR R 20 bar	P01 MP Filtri standard
	V FPM S 210 bar	Pxx Customized
	F MFQ U 210 bar, stainless steel filt	er element • •

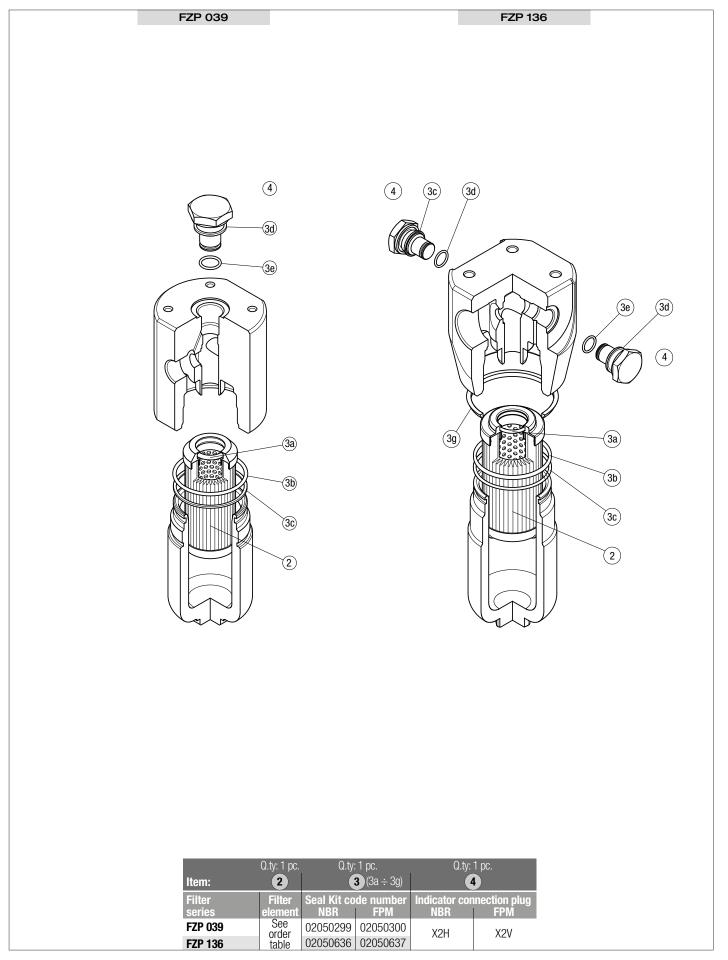
		AUDESS	DUNIEO
Differentia	al indicators	page	
DEH Haz	ardous area electronic differential indicator	630	DVX Vis
DEX Elec	ctrical differential indicator	631	DVY Vis
DLX Elec	ctrical / visual differential indicator	631	
Additional	l features	page	
X2 Plug	g	632	

ACCESSORIES


	page
DVX Visual differential indicator	631
DVY Visual differential indicator	632

IN-LINE

FZP136 FZP


Dimensions

FZP	FZP136									
Filter length	H [mm]									
1	222									
2	335									
3	410									
Connections	R									
Α	M10									
Α	M10									
A B - C	M10 3/8" UNC									
A B - C D	M10 3/8" UNC M10									

FZP spare parts

Order number for spare parts

FZF



Maximum working pressure up to 70 Mpa (700 bar) - Flow rate up to 50 l/min

=ZH general information

Description

Stainless steel high pressure filters

In-line

Maximum working pressure up to 70 Mpa (700 bar) Flow rate up to 50 l/min

FZH is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 50 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element "N", for use with filters provided with bypass valve
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L

Technical data

- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZH filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to IN

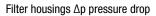
Microfibre filter elements - series N-R: 20 bar. Element series "N - R":

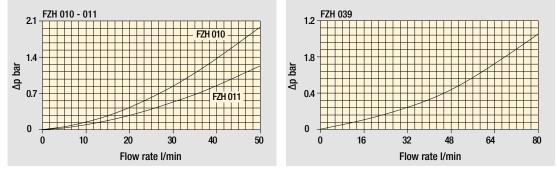
- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar. Element series "H - S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

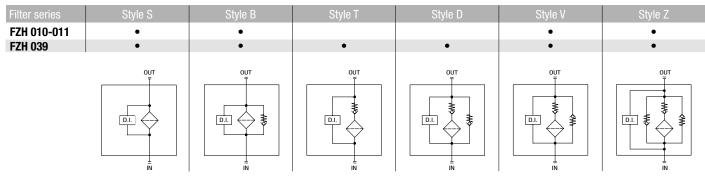

- Element series "U":
- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic



Weights [kg] and volumes [dm³]

Filter series	Weights [kg]						Volumes [dm ³]						
	Length						Length						
FZH 010-011		2.1	2.2	2.7	3.3			0.10	0.12	0.15	0.20		
FZH 039		-	7.8	8.9	10.1			-	0.19	0.26	0.34		

Pressure drop


The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Flow rates [l/min]

			Filter elem	ent design	- R Series			Filter eleme	nt design -	S-U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
FZH 010	1	4	6	8	9	11	4	5	6	7	9
	2	7	9	17	20	26	5	7	14	17	23
	3	11	14	25	27	32	11	14	24	27	32
	4	17	20	29	31	34	13	16	26	29	33
	1	4	6	8	9	11	3	5	6	7	9
FZH 011	2	7	9	17	21	28	5	7	14	17	24
211011	3	11	14	26	30	37	11	14	25	29	36
	4	17	21	32	36	40	12	16	28	32	38
	2	19	25	43	50	59	19	23	41	45	55
FZH 039	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com. Please, contact our Sales Department for further additional information.

()) MPALTRI

Hydraulic symbols

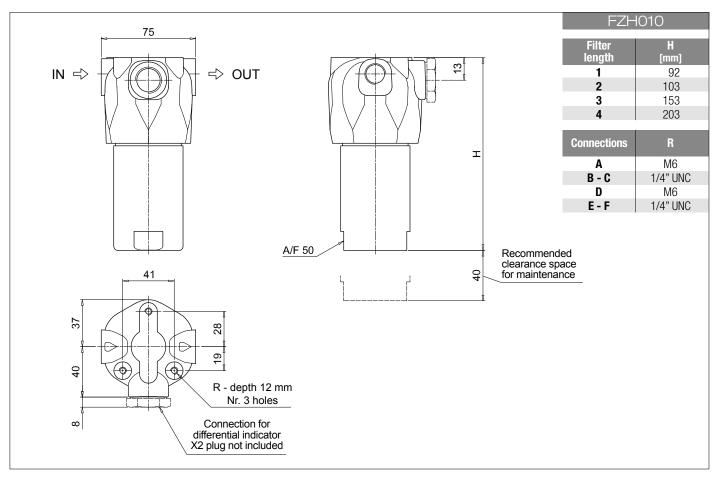
FZH FZH010 - FZH011

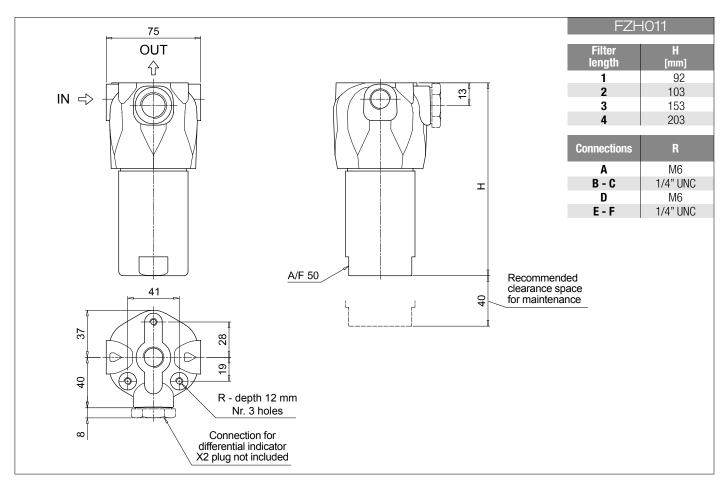
Designation & Ordering code

	COMPLETE FILTE	R					
Series and size	Configuration example: FZH	010 2	B F	В	2	A03	U P01
FZH010 FZH011							
Length							
1 2 3 4							
Valves							
S Without bypass							
B With bypass 6 bar							
V With reverse flow, without bypass Z With reverse flow, with bypass 6 bar							
Seals							
A NBR							
V FPM F MFQ							
Connections							
A G 1/4"							
B 1/4" NPT							
C SAE 5 - 1/2" - 20 UNF D G 3/8"							
E 3/8" NPT							
F SAE 6 - 9/16" - 18 UNF							
Connections for differential indicator 1 Without							
2 With connection on the top							
Filtration rating (filter media)							
A03 Inorganic microfiber 3 μm			Val	ves			
A06 Inorganic microfiber 6 μm	Element ∆p N 20 bar		S B	VZ	Exec P01	ution MD Filt	ri standard
A10Inorganic microfiber10 μmA16Inorganic microfiber16 μm	H 210 bar		•	•	Pxx	Custor	
A25 Inorganic microfiber 25 µm	U 210 bar, stainless	steel filter eleme		• •	<u></u>	ouoton	11200
	,						
	FILTER ELEMENT						
		onfiguration example:	HP011	2	403	F	U P01
Element series and size	(onngulation example.	IIFUIT		-103		
Element length							
1 2 3 4							
Filtration rating (filter media)							
A03 Inorganic microfiber 3 µm							
A06 Inorganic microfiber 6 µm							
A10 Inorganic microfiber 10 µm							
A16 Inorganic microfiber 16 μm A25 Inorganic microfiber 25 μm							
A25 Inorganic microfiber 25 μm			Valv	/es			
Seals	Element ∆p		S B	VZ	Exec		ni otomala val
A NBR V FPM	N 20 bar H 210 bar		•	•	P01 Pxx	Custom	ri standard
<u> </u>	210 001		-	-	1 ^^	oustoll	1120U

U 210 bar, stainless steel filter element • • • •

		ACCES	SORIES
Diffe	rential indicators	page	
DEH	Hazardous area electronic differential indicator	630	DVX
DEX	Electrical differential indicator	631	DVY
DLX	Electrical / visual differential indicator	631	
Addi	tional features	page	
X2	Plug	632	


F


MFQ

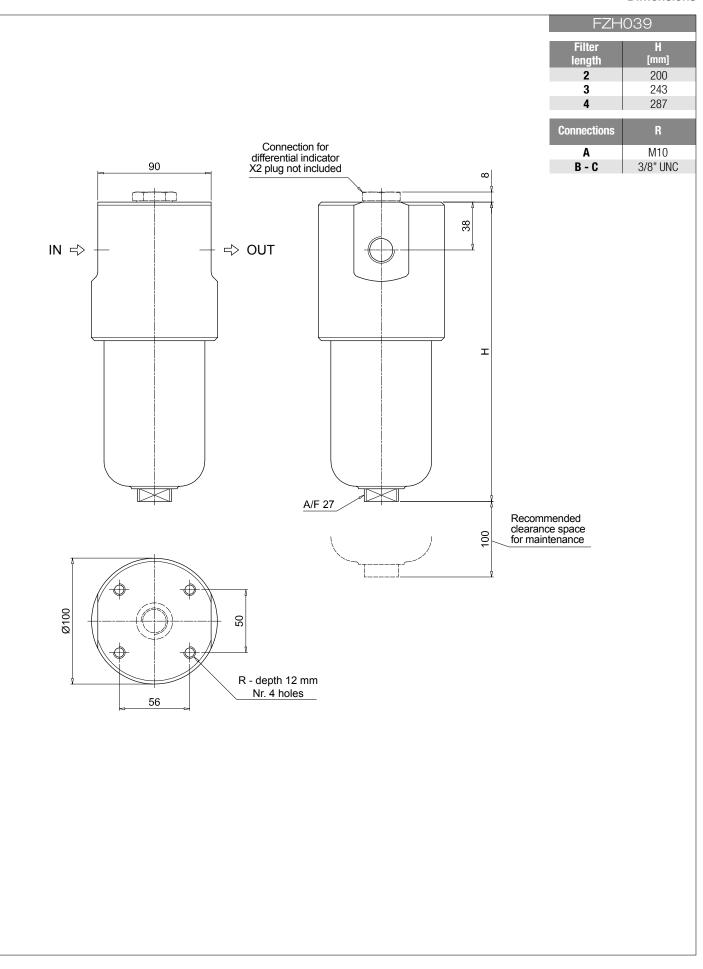
	page
DVX Visual differential indicator	631
DVY Visual differential indicator	632

Stainless steel high pressure filters 588

Dimensions

FZH FZH039

Designation & Ordering code


	COMPLETE	ILTER							
Series and size	Configuration example:	FZH039	2 T	A		A [2 A	.03	S P01
FZH039									
Length									
2 3 4									
Valves									
S Without bypass									
B With bypass 6 bar									
T With check valve, without bypass									
D With check valve, with bypass 6 bar									
 V With reverse flow, without bypass Z With reverse flow, with bypass 6 bar 									
Seals									
A NBR									
V FPM									
F MFQ									
Connections									
A G 1/2"									
B 1/2" NPT									
C SAE 8 - 3/4" - 16 UNF									
Connections for differential indicator									
1 Without							_		
2 With connection on the top									
Filtration rating (filter media)									
A03 Inorganic microfiber 3 µm				Valve	ac action of the second s				
A06 Inorganic microfiber 6 µm	ement ∆p		S B	T	D V	Ζ	Exect	ution	
A10 Inorganic microfiber 10 μm	20 bar		•		•	•	P01		i standard
A16 Inorganic microfiber 16 μm S A25 Inorganic microfiber 25 μm U	210 bar 210 bar, stainless ste	ol filtor olom	• ent • •	•	•	-	Pxx	Custom	IZEC
A25 Inorganic microfiber 25 μm	210 Dai, Stainiess Ste			•		-			

					FIL	TER ELE	MENT											
Element series and size							Configuration	example	e: H	P039		2	AC)3	Α	S	5 F	2 01
HP039																		\square
Element length																		
2 3 4																		
Filtration rating (filter media)																		
A03 Inorganic microfiber	3 µm																	
A06 Inorganic microfiber	6 µm																	
A10 Inorganic microfiber	10 µm																	
A16 Inorganic microfiber	16 µm																	
A25 Inorganic microfiber	25 µm																	
										Valves	S							
		Seal	s	Ele	ment ∆p	, in the second s		S	В	T) V	Z		Exec	ution			
		Α	NBR	R	20 bar				•		•	•		P01	MP	Filtri	standa	ard
		V	FPM	S	210 bar			•		•	•		_	Pxx	Cus	tomiz	zed	
		F	MFQ	U	210 bar, st	ainless st	eel filter element	•	•	•	•	•						

		ACCESS	SORIES
Diffe	erential indicators	page	
DEH	Hazardous area electronic differential indicator	630	DVX
DEX	Electrical differential indicator	631	DVY
DLX	Electrical / visual differential indicator	631	
Add	tional features	page	
X2	Plug	632	

		page
DVX	Visual differential indicator	631
DVY	Visual differential indicator	632

Dimensions

FZH SPARE PARTS

Order number for spare parts

FZH	010 - 011	FZH 039
	36 36 36 30	
se FZ	Q.ty: 1 pc. Q.ty: 1 pc. em: Q 3 (3a ÷ 3e) ter Filter Seal Kit code number ries Element NBR FPM H 010-011 See order table 02050501 0205049 H 039 Colored (2050335) 02050335 02050335	Pr Indicator connection plug NBR FPM 2 Y2H Y2V

Maximum working pressure up to 100 Mpa (1000 bar) - Flow rate up to 10 l/min

FZX general information

Description

Technical data

Stainless steel high pressure filters

In-line

Maximum working pressure up to 100 Mpa (1000 bar) Flow rate up to 10 l/min

FZX is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 10 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- High collapse filter element "H", for use with filters not provided with bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZX filters are provided for vertical mounting

∆p element type

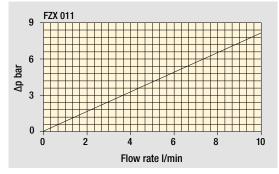
Fluid flow through the filter element from OUT to IN Microfibre filter elements - series H: 210 bar.

Element series "H":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements

- series U: 210 bar.
 - Element series "U":
 - End cap: Stainless Steel
 - Core tube: Stainless Steel
 - External support: Stainless Steel
 - Internal support: Stainless Steel
 - Media/Support/Pre-filter: Microfibre/Syntetic

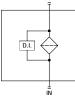

Weights [kg] and volumes [dm³]

Filter series		Weights [kg]						Volumes [dm ³]						
	Length						Length							
FZX 011		-	-	6.5	-			-	-	0.15	-			

Pressure drop

Filter housings Δp pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.


Flow rates [l/min]

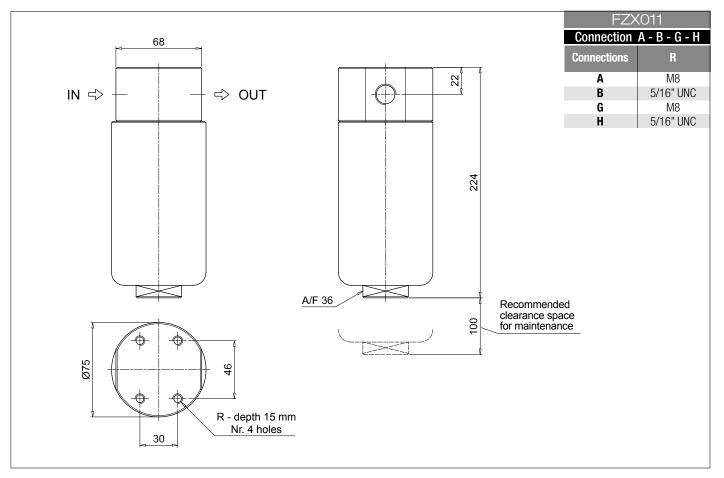
			Filter element design - H-U Series								
Filter series	Length	A03	A06	A10	A16	A25					
FZX 011	3	1.57	1.63	1.73	1.74	1.77					

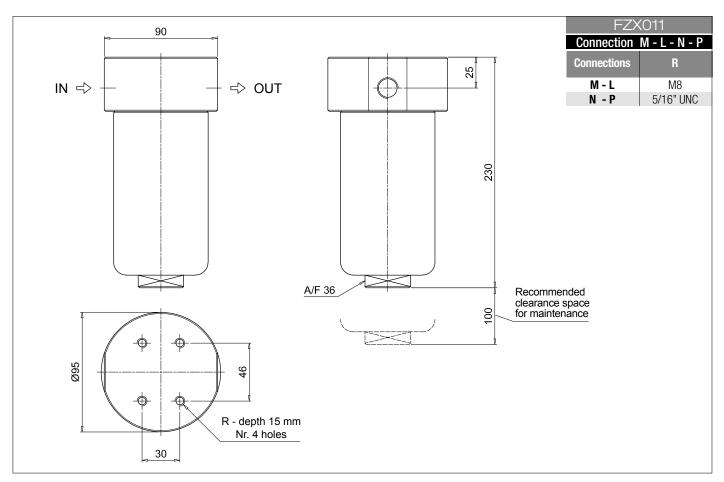
Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com. Please, contact our Sales Department for further additional information.

Filter series	Style S
FZX 011	•
	OUT

Hydraulic symbols

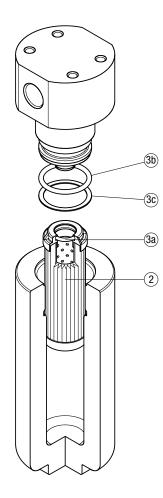

Designation & Ordering code


	COMPLETE	FILTER										
s and size	Configuration example:	FZX011	3	S		V	В		1	A03	U	P01
		-					T					
th												
S												
MFQ												
ections												
700 bar												
	-											
3/4 - 14 11 3												
ection for differential indicators												
Without									-			
tion rating (filter modia)	-											
	I											
				_								
Inorganic microfiber 16 µm											iltri et	andard
Inorganic microfiber 25 µm		-		ainless	steel	filter	elem	nent				
	G 1/4" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators	s and size Configuration example: 11 th s Without bypass NBR FPM MFQ ections 700 bar G 1/4" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rating (filter media) Inorganic microfiber 3 µm Inorganic microfiber 10 µm Inorganic microfiber 10 µm Inorganic microfiber 16 µm	11 th th ts Without bypass NBR FPM MFQ ections 700 bar G 1/4" 1/4" NPT G 1/2" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rating (filter media) Inorganic microfiber 3 µm Inorganic microfiber 6 µm Inorganic microfiber 16 µm Inorganic microfiber 16 µm Inorganic microfiber 25 µm H 21	s and size Configuration example: FZX011 3 11 th ss Without bypass SNBR FPM MFQ ections Configuration example: FZX011 3 (Configuration example: FZX01 3 (Configuration example: F	s and size Configuration example: FZX011 3 S 11 th S S Without bypass S NBR FPM MFQ ections 700 bar G 1/4" 1/4" NPT G 1/2" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rating (filter media) Inorganic microfiber 3 μm Inorganic microfiber 6 μm Inorganic microfiber 75 μm	s and size Configuration example: FZX011 3 S 11 th s Without bypass NBR FPM MFQ ections 700 bar 6 1/4" 1/4" NPT 6 1/4" 1/4" NPT 6 1/4" 1/4" NPT 6 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rating (filter media) Inorganic microfiber 3 µm Inorganic microfiber 6 µm Inorganic microfiber 5 µm Inorganic microfiber 6 µm Inorganic microfiber 16 µm Inorganic microfiber 75 µm H 210 bar	s and size Configuration example: FZX011 3 S V 11 th S Without bypass NBR FPM MFQ Configuration example: FZX011 3 S V	s and size Configuration example: FZX011 3 S V B 11 th S Without bypass NBR FPM MFQ O Configuration example: FZX011 3 S V B I I I I I I I I I I I I I I I I I I I	s and size Configuration example: FZX011 3 S V B 11 th s Without bypass NBR FPM MFQ ections 700 bar 6 1/4" 1/4" NPT 6 1/4" 1/4" NPT 6 1/4" 1/4" NPT 6 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without ton rating (filter media) Inorganic microfiber 3 µm Inorganic microfiber 10 µm Inorgani	s and size Configuration example: FZX011 3 S V B 1 11 th s Without bypass NBR FPM MFQ ections 700 bar G 1/4" 1/4" NPT G 1/4" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rading (filter media) Inorganic microfiber 3 µm Inorganic microfiber 10 µm Inorganic microfib	s and size Configuration example: FZX011 3 S V B 1 A03 11 th th s Without bypass NBR FPM MFQ ections 700 bar G 1/4" 1/4" NPT G 1/2" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rating (filter media) Inorganic microfiber 3 μm Inorganic microfiber 10 μm Inorganic mic	s and size Configuration example: FZX011 3 S V B 1 A03 U 11 th th s Without bypass S Without bypass S NBR FPM MFQ ections 700 bar G 1/4" 1/4" NPT G 1/2" 1/2" NPT" Autoclave 20 000 psi 9/16" - 18 UNF 3/4" - 14 NPS ection for differential indicators Without tion rating (filter media) Inorganic microfiber 13 µm Inorganic microfiber 10 µm Inorgani

	FILTER ELEMENT	
Element series and size	Configuration example: HP011 3 A	03 V U P01
HP011		
Planaut lau uth		
Element length		
<u>.</u>		
Filtration rating (filter media)		
A03 Inorganic microfiber 3 µm		
A06 Inorganic microfiber 6 µm		
A10 Inorganic microfiber 10 µm		
A16 Inorganic microfiber 16 µm		
A25 Inorganic microfiber 25 µm		
	Seals Element Δp	Execution
	A NBR H 210 bar	P01 MP Filtri standard
	V FPM U 210 bar, stainless steel filter element	Pxx Customized
	F MFQ	

FZX011 HZX

Dimensions



Order number for spare parts

FZX 011

Item:	Q.ty: 1 pc.		1 pc. (3a ÷ 3c)
Filter series	Filter element	Seal Kit co NBR	de number FPM
FZX 011	See order table	02050643	02050644

Maximum working pressure up to 32 Mpa (320 bar) - Flow rate up to 70 l/min

GENERAL INFORMATION

Description

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 l/min

FZM is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the top of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to Ø15 mm, for a maximum flow rate of 70 l/min
- ISO 4401 CETOP 3 and CETOP 5 interface, for direct mounting on the CETOP valves.
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

Technical data

- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C) **Optional FPM**
- series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

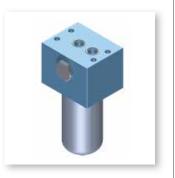
Temperature From -50 °C to +120 °C

Note FZM filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar. Element series "R":

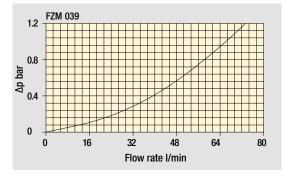

- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned Steel - Core tube: Tinned Steel
- External support: Wire mesh Epox painted - Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic


Weights [kg] and volumes [dm³]

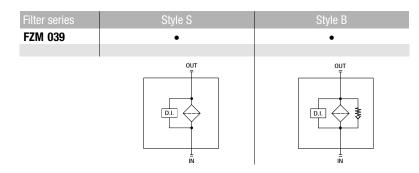
Filter series	Weights [kg]								Volumes [dr	n³]		
	Length						Length					
FZM 039		-	5.0	5.6	6.1			-	0.19	0.26	0.34	

- Head: AISI 316L

Pressure drop

Filter housings Δp pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.


Flow rates [l/min]

			Filter elem	ent design	- R Series		Filter element design - S-U Series					
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	
	2	19	25	41	47	54	19	23	39	43	51	
FZM 039	3	33	36	50	56	65	30	33	45	49	60	
	4	41	44	58	64	70	37	39	51	63	68	

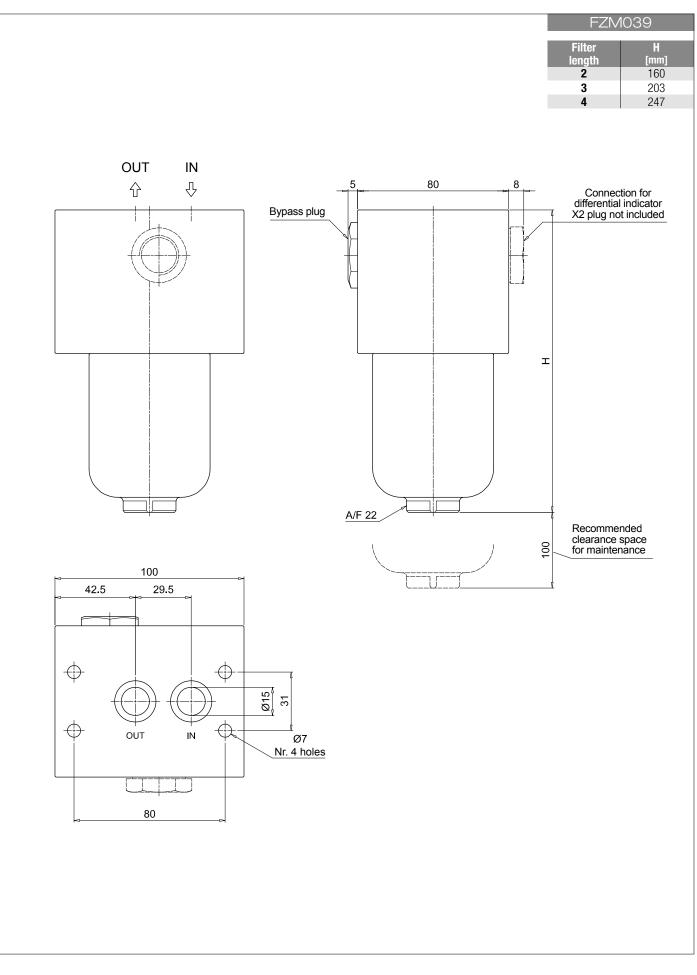
Maximum flow rate for a complete stainless steel high pressure filter with a return drop $\Delta p = 1.5$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity of so min 73 (cot) and a density of 0.00 kg/dm .

Please, contact our Sales Department for further additional information.

Hydraulic symbols

FZM FZM039


Designation & Ordering code

	CON	IPLETE I	FILTER										
Series and size	Configuratio	n example:	FZM039	2		S	А	Μ		1	A10	H	P01
FZM039													
	_												
Length													
2 3 4	_												
Valves													
S Without bypass													
B With bypass 6 bar	_												
	_												
Seals													
A NBR	_												
V FPM	_												
F MFQ	_												
Connections													
M Manifold													
Connection for differential indicator													
1 Without													
2 With connection													
Filtration rating (filter media)													
A03 Inorganic microfiber 3 μm	_												
A06 Inorganic microfiber 6 μm	_												
A10 Inorganic microfiber 10 μm	_												
A16 Inorganic microfiber 16 µm	_												
A25 Inorganic microfiber 25 μm	-							Valv	es	_			
		ment ∆p						S	В		ecution		a na al a mal
	R	20 ba						-	•	P01			andard
	S	210 ba						•		Px	CUST	omize	J
	U	210 ba	r. stainless	steel filt	ter ele	ement		•	•				

	FILTER ELEMENT	
Element series and size	Configuration example: HP039 3 A	10 A S P01
HP039		
Element length		
2 3 4		
Filtration rating (filter media)		
A03 Inorganic microfiber 3 µm		
A06 Inorganic microfiber 6 µm		
A10 Inorganic microfiber 10 µm		
A16 Inorganic microfiber 16 µm		
A25 Inorganic microfiber 25 µm		
	Seals Element Δp	Execution
	A NBR R 20 bar	P01 MP Filtri standard
	V FPM S 210 bar	Pxx Customized
	F MFQ U 210 bar, stainless steel filter element	

	ACCES	SORIES	
Differential indicators	page		page
DEH Hazardous area electronic differential indicator	630	DVX Visual differential indicator	631
DEX Electrical differential indicator	631	DVY Visual differential indicator	632
DLX Electrical / visual differential indicator	631		
Additional features	page		
X2 Plug	632		

Dimensions

FZM SPARE PARTS

Order number for spare parts

FZM 039 (3n) (3h) (5 6 XC 6 \bigcirc (3e) (3d) 4 -(3a) (3b) (3c) (2) Q.ty: 1 pc. Q.ty: 1 pc. Q.ty: 1 pc. Q.ty: 1 pc. 2 **3** (3a ÷ 3n) 5 Item: 4 Seal Kit code number NBR FPM Indicator connection plug NBR FPM Bypass assembly / plug NBR FPM Filter Filter See order table series 02050651 02050652 X2H X2V 010029083 010029083 FZM 039

Maximum working pressure up to 32 Mpa (320 bar) - Flow rate up to 75 l/min

GENERAL INFORMATION

Description

Technical data

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 75 l/min

FZB is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the side of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to Ø16 mm, for a maximum flow rate of 75 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- **Optional FPM** series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve

Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZB filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series R: 20 bar. Element series "R":

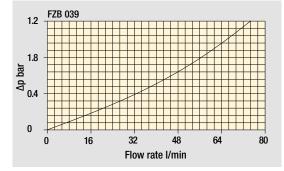
- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted - Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic



Weights [kg] and volumes [dm³]

Filter series			Weights	s [kg]				Volumes [dr	n³]		
	Length					Length					
FZB 039		-	4.6	5.2	5.7		-	0.19	0.26	0.34	

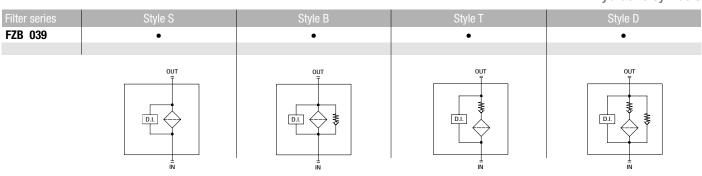
Pressure drop

Filter housings Δp pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Flow rates [l/min]

		Filter element design - R Series				Filter element design - S Series					Filter element design - U Series					
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	18	23	39	44	52	18	22	37	40	48	18	22	37	40	48
FZB 039	3	31	33	47	54	65	28	31	43	46	84	28	31	43	46	84
	4	38	41	56	63	71	34	36	48	62	68	34	36	48	62	68


Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

Please, contact our Sales Department for further additional information.

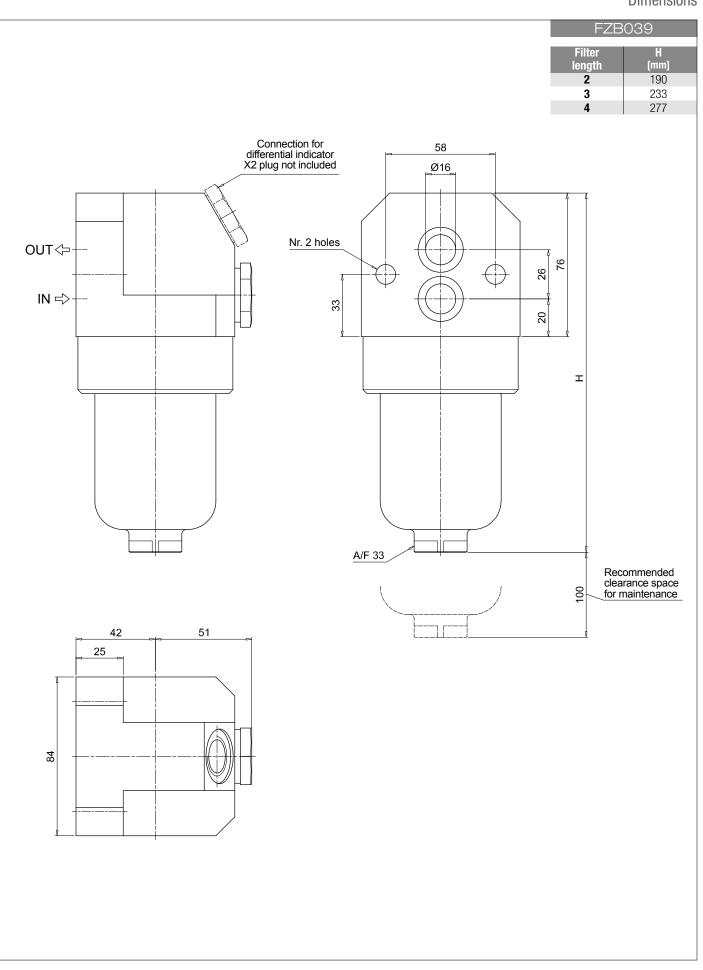
Hydraulic symbols

FZB FZB039

page 631 632

Designation & Ordering code

		COMPLET	E FILTER									
Series and size	Co	onfiguration exam	ole: FZB039	2	T		A	F	2	A06	S	P01
FZB039												
Length												
Valves												
S Without bypass												
B With bypass 6 bar												
T With check valve, without bypassD With check valve, with bypass 6 bar												
Seals												
A NBR												
V FPM F MFQ												
F MFQ												
Connections												
F Manifold												
Connections for differential indicator												
1 Without												
2 With connection on the top												
Filtration rating (filter media) A03 Inorganic microfiber 3 µm												
A05 Inorganic microfiber 6 μm												
All Inorganic microfiber 10 μm												
A16 Inorganic microfiber 16 μm							Valv	00				
A25 Inorganic microfiber 25 µm	Elen	nent ∆p				S		ES T [Executio		
	R	20 bar					•				P Filtri st	
	S	210 bar	alaas staal CU		+	•		•	F	YXX CL	istomize	d
	U	210 bar, sta	nless steel filte	r elem	ent	•	•	• •				


	FILTER ELEMENT	
Element series and size	Configuration example: HP039 2 A	.06 A S P01
HP039		
Element length		
Filtration rating (filter media)		
A03 Inorganic microfiber 3 µm		
A06 Inorganic microfiber 6 µm		
A10 Inorganic microfiber 10 µm		
A16 Inorganic microfiber 16 µm		
A25 Inorganic microfiber 25 µm		
	Seals Element ∆p	Execution
	A NBR R 20 bar	P01 MP Filtri standard
	V FPM S 210 bar	Pxx Customized
	F MFQ U 210 bar, stainless steel filter element	

	ACCES	SORIES
Differential indicators	page	
DEH Hazardous area electronic differential indicator	630	DVX Visual differential indicator
DEX Electrical differential indicator	631	DVY Visual differential indicator
DLX Electrical / visual differential indicator	631	
Additional features	page	
X2 Plug	632	

Stainless steel high pressure filters 614-

FZB039 FZE

FZB SPARE PARTS

Order number for spare parts

Q.ty: 1 pc.	2.ty: 1.pc.	30 (3) (3) (3) (3) (3) (3) (3) (3)	(4)	The second se	
Item: 2 Filter Filter	3 (3a ÷ 3n)		4	5	5
series element See order table table	Seal Kit code number NBR0205064702050648	NBR X2H	nnection plug FPM X2V	Bypass asse NBR 02001286	FPM 02001295

Maximum working pressure up to 35 Mpa (350 bar) - Flow rate up to 90 l/min

FZD GENERAL INFORMATION

Description

Stainless steel high pressure filters

Duplex

Maximum working pressure up to 35 Mpa (350 bar) Flow rate up to 90 l/min

FZD is a range of stainless steel high pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 3/4", for a maximum flow rate of 90 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Balancing valve integrated in the changeover lever, to equalize the housing pressure before the switch.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- System where shut-down causes high costs
- System where shut-down causes safety issues

Filter housing materials

- Head: AISI 316L

Technical data

- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
 Optional FPM
- series V (-20 °C to +120 °C) - Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZD filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

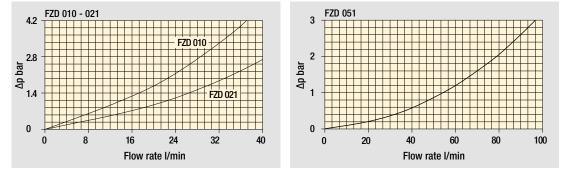
- End cap: Nylon
- Core tube: Tinned Steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar. Element series "H - S":

- End cap: Tinned Steel
- Core tube: Tinned Steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless Steel
- Core tube: Stainless Steel
- External support: Stainless Steel
- Internal support: Stainless Steel
- Media/Support/Pre-filter: Microfibre/Syntetic



Weights [kg] and volumes [dm³]

Filter series			Weigh	ts [kg]					Volume	es [dm³]		
	Length						Length					
FZD 010		-	7.9	-	-	-		-	0.10	-	-	-
FZD 021		-	9.6	9.8	10.3	-		-	0.06	0.12	0.22	-
FZD 051		-	17.4	18.0	19.0	20.3		-	0.31	0.41	0.53	0.83

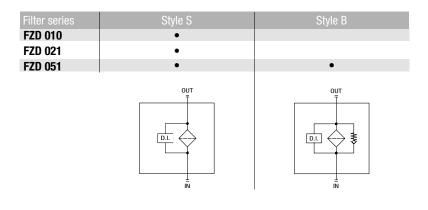
Pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Flow rates [l/min]

			Filter elem	ent design	- H Series			Filter elem	nent design	- U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
FZD 010	2	4	5	7	8	11	4	5	7	8	11
	-	_									
	2	5	6	11	12	16	5	6	11	12	16
FZD 021	3	9	11	16	18	20	9	11	16	18	20
	4	10	12	17	19	21	10	12	17	19	21

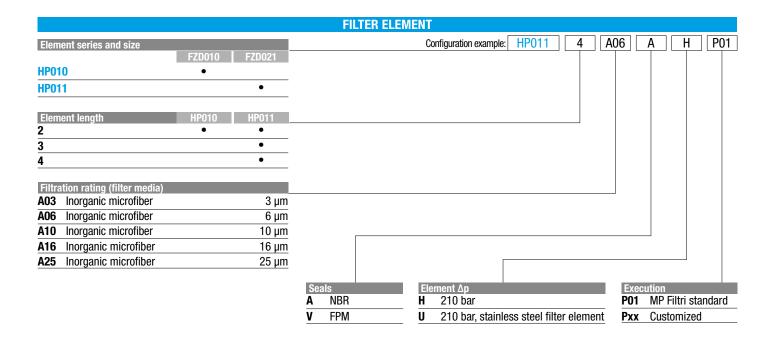
		Filter	r elemei	nt desig	n-RS	eries	Filte	r elemei	nt desig	n - SS	eries	Filter	r elemer	nt desig	n-US	eries
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	39	41	51	54	59	35	37	48	51	58	35	37	48	51	58
E7D 0E1	3	45	46	54	56	61	41	43	52	54	60	41	43	52	54	60
FZD 051	4	50	52	58	58	62	47	49	56	56	61	47	49	56	56	61
	5	56	57	61	62	63	53	53	57	59	63	53	53	57	59	63


MPALTRI

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

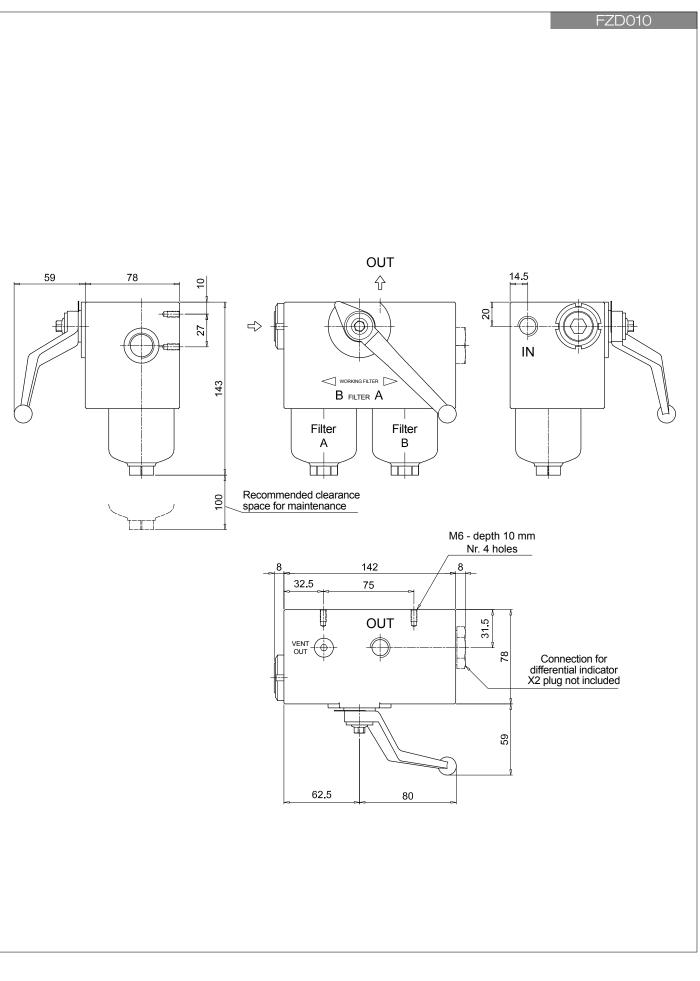
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


Please, contact our Sales Department for further additional information.

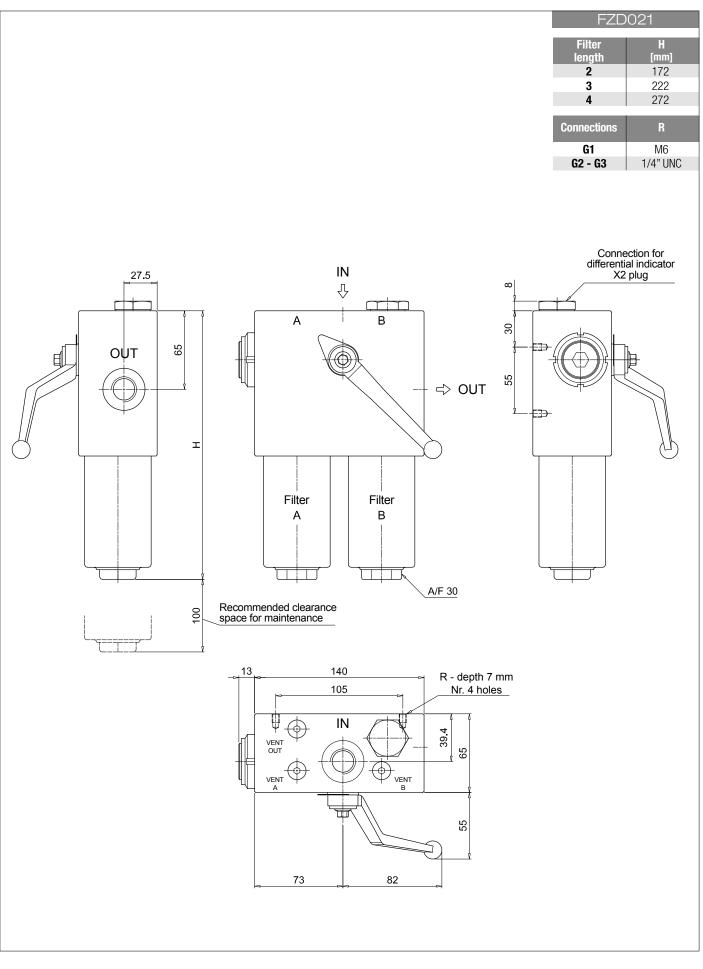
Hydraulic symbols

Designation & Ordering code


			COMPLETE FILTE	3											
	s and size		Configuration example	e: FZD021	4		S	A	۱	G1	A	06	Н	P	01
FZDO	10 FZD021														
Leng	th	FZD010 FZD021													
2		• •													
3		•													
4		•													
Volv															
Valve S	without bypass														
<u> </u>	Without bypuss														
Seals	3														
A	NBR														
V	FPM														
0		FZD004													
	ections FZD010 G 3/8"	FZD021 G 1/2"													
G1 G2															
G3	3/8" NPT	1/2" NPT SAE 8 - 3/4" - 16 UNF													
us	-	SAE 0 - 3/4 - 10 UNF													
Filtra	tion rating (filter media)														
A03	Inorganic microfiber	3 μm										_			
A06	Inorganic microfiber	6 µm													
A10	Inorganic microfiber	10 µm													
A16	Inorganic microfiber	16 µm													
A25	Inorganic microfiber	25 µm	Ele	ement ∆p						I D	Execu	tion			
		· · · ·	Н	210 bar						_		MP Fi	ltri st	anda	rd
			U	210 bar, st	ainless	stee	filter	ele	men	t F	ХХ	Custo	mize	d	

		ACCES	SORIES
Diffe	rential indicators	page	
DEH	Hazardous area electronic differential indicator	630	DVX
DEX	Electrical differential indicator	631	DVY
DLX	Electrical / visual differential indicator	631	
Addi	tional features	page	
X2	Plug	632	

		page
DVX	Visual differential indicator	631
DVY	Visual differential indicator	632


Dimensions

() MPALTRI

FZD fzd010 - fzd021

HZD FZD051

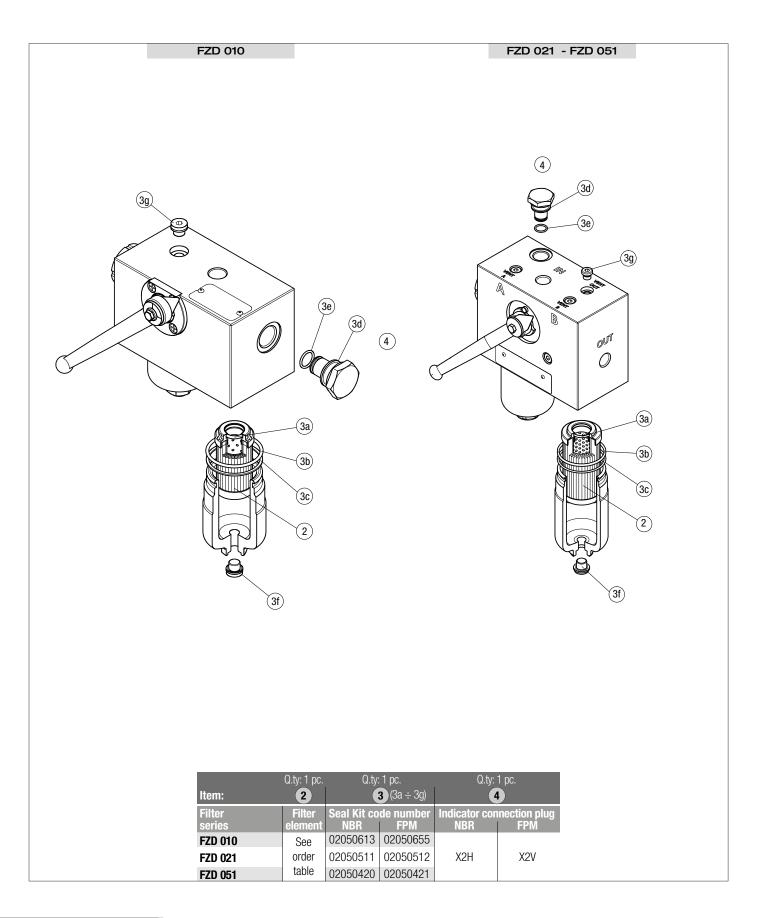
Designation & Ordering code

			COMF	LETE FILTER										
Serie	es and size		Con	figuration example:	FZD051	3		B	Α	G3	A	03	U	P01
FZDO														
Leng	th													
	3 4 5													
Valve														
S	Without bypass													
B	With bypass 6 bar													
Seals														
A	NBR													
V	FPM													
Conn	andiana													
G1	G 3/4"													
G2	3/4" NPT													
G3	G 1/2"													
G4	1/2" NPT													
G5	SAE 8 - 3/4" - 16 UNF													
G6	SAE 12 - 1 1/16" - 12 UN													
Filter	ation nation (filton modia)	_												
A03	ation rating (filter media) Inorganic microfiber	3 µm												
A06	Inorganic microfiber	6 µm												
A10	Inorganic microfiber	10 µm												
A16	Inorganic microfiber	16 µm							Valves				_	
A25	Inorganic microfiber	25 µm	Elen	nent ∆p 20 bar					S B		хесі 01		ltri eta	Indard
			S	210 bar					•			Custo		
			U	210 bar, stain	less steel fi	lter ele	ment		• •			2 1010		

FILTER ELEMENT Configuration example: HP050 3 A03 A U P01 Element series and size HP050 **Element length** 2 3 4 5 Filtration rating (filter media)A03Inorganic microfiber 3 µm A06 Inorganic microfiber 6 µm A10 Inorganic microfiber 10 µm 16 µm A16 Inorganic microfiber 25 µm A25 Inorganic microfiber Element ∆p Execution Seals NBR R 20 bar P01 MP Filtri standard A V FPM S 210 bar Pxx Customized 210 bar, stainless steel filter element U

		ACCESS	SORIES
Diffe	rential indicators	page	
DEH	Hazardous area electronic differential indicator	630	DVX
DEX	Electrical differential indicator	631	DVY
DLX	Electrical / visual differential indicator	631	
Addi	tional features	page	
X2	Plug	632	

		page
DVX	Visual differential indicator	631
DVY	Visual differential indicator	632


Stainless steel high pressure filters 626

Filter length 2 3 3 4 5 5 Connections G1 6 G2 6 G3 6 G4-G5-G6 1 Valves L Valves L Imm] [r	H [mm] 253 295 343 465 R M6 1/4" UNC M6 1/4" UNC M6 1/4" UNC
IN V V V V V V V V V V V V V	for icator
R - depth 7 mm Nr. 4 holes	

Order number for spare parts

Clogging indicators

Differential indicators

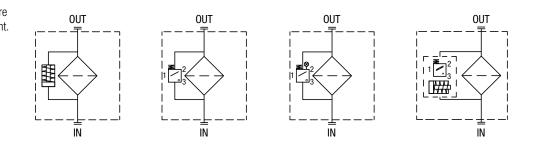
Introduction

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

These devices trip when the clogging of the filter element causes an increase in pressure drop across the filter element.

The indicator is set to alarm before the element becomes fully clogged.

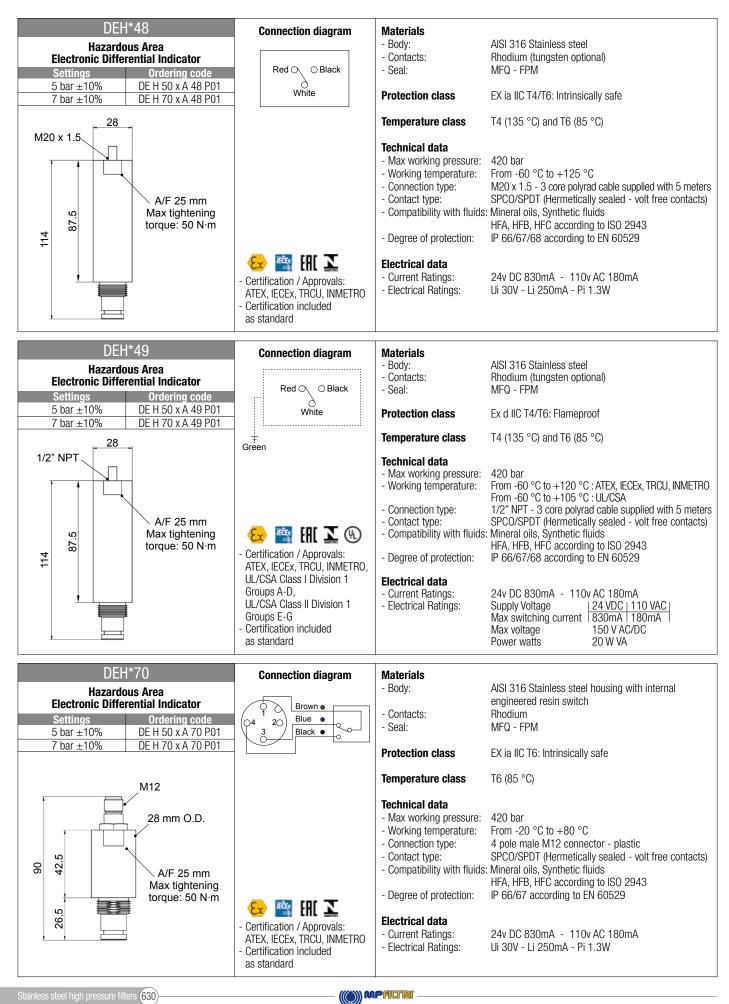
MP Filtri can supply indicators of the following designs:

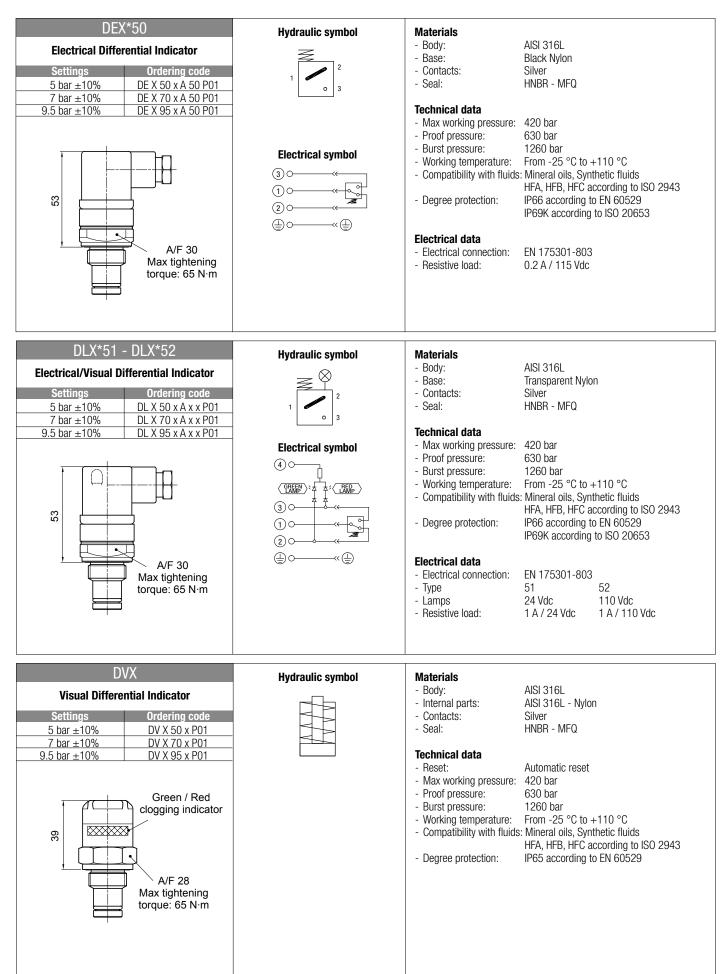

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals.

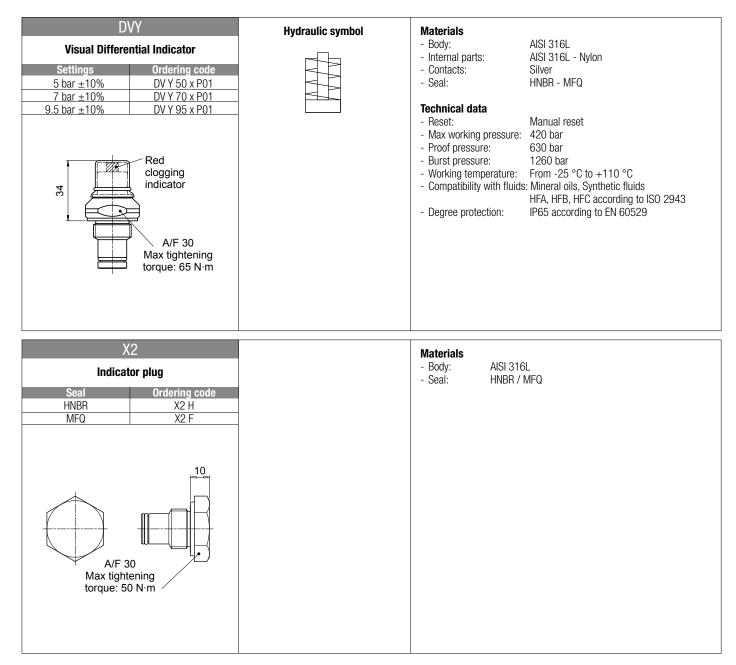
Suitable indicator types

DIFFERENTIAL INDICATORS


Differential indicators are used on the Pressure line to check the efficiency of the filter element. They measure the pressure upstream and downstream of the filter element (differential pressure). Standard items are produced with special connection G 1/2" size. Also available in Stainless Steel models.



Quick reference quide


Quick	reference guide				-Hazardous
	Filter series	Visual indicator	Electrical indicator	Electrical / Visual indicator	area electronic indicator
With bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZX 011 FZB 039 FZM 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA49P01 DEH70xA70P01
Without bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVY70xP01	DEX70xA50P01	DLX70xA51P01 DLX70xA52P01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
))) MPALTRI' ——		(62

ERENTIAL INDICATORS

DIFFERENTIAL INDICATORS

Designation & Ordering code

	DESIGNATION & ORDERING CODE - DIFFERENTIAL INDICATORS								
Ser	ries	Configuration example 1:	DE	H	50	F	Α	70	P01
	Electrical or Electronic differential indicator	Configuration example 2:	DE		50	H	Δ	50	P01
DL	Electrical / Visual differential indicator	° ' [^		
DV	Visual differential indicator	Configuration example 3:	DL		95	V	A	71	P01
		Configuration example 4:	DV	Y	70	V			P01
Тур	DE DL DV								
H	Hazardous area •								
Х	Standard type • • •								
Y	Optional type								
	essure setting								
	5 bar								
	7 bar								
95	9.5 bar								
Sea	als	DEH DEX DLX	DV						
F	MFQ	•							
Η	HNBR	• •	•						
V	FPM	• • •	•						
_	ermostat								
Α	Without								
			DW						
	ctrical connections Connection M20	DEH DEX DLX	DV						
40 49		•							
49 50	Connection EN 175301-803								
	Connection EN 175301-803, transparent base with la	mps 24 Vdc •				0.0	tion		
	Connection EN 175301-803, transparent base with la					P0		- iltri sta	ndard
	Connection IEC 61076-2-101 D (M12)	•				Px		omized	
10		•				<u></u>	. 0401		

DESIGNATION & ORDERING CODE - DIFFERENTIAL INDICATOR PLUG

Series	Configuration example X2 H
X2 Indicator plug	
Seals	
H HNBR	

F MFQ

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators. The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

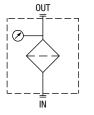
These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.

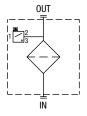
634

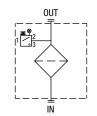
Clogging Indicators

635

Clogging indicators

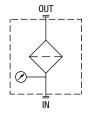

Suitable indicator types

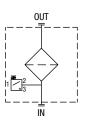

VACUUM INDICATORS

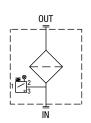

Vacuum indicators are used on the Suction line to check the efficiency of the filter element.

They measure the pressure downstream of the filter element.

Standard items are produced with R 1/4" EN 10226 connection. Available products with R 1/8" EN 10226 to be fitted on MPS series.

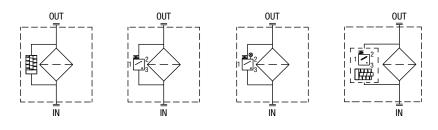






BAROMETRIC INDICATORS

Pressure indicators are used on the Return line to check the efficiency of the filter element. They measure the pressure upstream of the filter element. Standard items are produced with R 1/8" EN 10226 connection.


DIFFERENTIAL INDICATORS

Differential indicators are used on the Pressure line to check the efficiency of the filter element.

They measure the pressure upstream and downstream of the filter element (differential pressure).

636

Standard items are produced with special connection G 1/2" size. Also available in Stainless Steel models.

CLOGGING INDICATORS

QUICK REFERENCE GUIDE

\mathbb{C}	-O(.OGGING INDICATORS QUICK REFERENCE GUID					NCE GUIDE
Filter family	Filter series		Visual indicator	Electrical indicator	Electrical / Visual indicator	Electronic indicator	
SUCTION) - 350 - 501 - 503 - 504 - 505 - 535 - 540	VVA16P01 VVR16P01	VEA21AA50P01	VLA21AA51P01 VLA21AA52P01 VLA21AA53P01 VLA21AA53P01 VLA21AA71P01		
	MPFX-M MPH wit	IPTX-MPF-MPT with bypass 1.75 bar h bypass 1.75 bar	BVA14P01 BVR14P01 BVP20HP01 BVQ20HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01		
RETURN FILTERS		IPTX-MPF-MPT with bypass 3 bar h bypass 2.5 bar	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01		
	MPLX FRI 025	- 040 - 100 - 250 - 630 - 850	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xAxxP01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01	DTA20xF70P01	
SUCTION	Suction line	MRSX 116 - 165 - 166	VVB16P01 VVS16P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01		
RETURN / SUCTION FILTERS	Return line	MRSX 116 - 165 - 166 LMP 124 MULTIPORT	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA25HA50P01 BEM25HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA25HA51P01 BLA25HA52P01 BLA25HA53P01 BLA25HA71P01		_
	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	VVB16P01 VVS16P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01		
SPIN-ON FILTERS	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	BVA14P01 BVR14P01 BVP20HP01 BVQ20HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01		
0,-	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DVA12xP01 DVM12xP01	DEA12xA50P01 DEM12xAxxP01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01		_
AEDIUM E FILTERS	With bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xAxxP01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01	DTA20xF70P01	
LOW & MEI PRESSURE FI	Without bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xAxxP01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01	DTA50xF70P01	Hazardous
ESSURE	With bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 320 - 500 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xAxxP01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01	DTA50xF70P01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
HIGH PRESSURE FILTERS	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 320 - 500 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA70xP01 DVM70xP01	DEA70xA50P01 DEM70xAxxP01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLE70xA50P01 DLE70xF50P01	DTA70xF70P01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
ESS STEEL PRESSURE JTERS	With bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZX 011 FZB 039 FZM 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01		DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
STAINLE HIGH P FIL	Without bypass valve	FZH 010 - 011 - 039 FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVY70xP01	DEX70xA50P01	DLX70xA51P01 DLX70xA52P01		DEH50xA48P01 DEH50xA49P01 DEH50xA70P01 DEH70xA48P01 DEH70xA48P01 DEH70xA49P01 DEH70xA70P01
				ILTR'		637	Clogging Indicators

-639

All data, details and words contained in this publication are provided for information purposes only. MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and / or commercial reasons. The colors and the pictures of the products are purely indicative. Any reproduction, partial or total, of this document is strictly forbidden. All rights are strictly reserved.

WORLDWIDE NETWORK

HEADQUARTERS

MP Filtri S.p.A. Pessano con Bornago Milano - Italy +39 02 957031 sales@mpfiltri.it

BRANCH OFFICES

ITALFILTRI LLC Moscow - Russia +7 (495) 220 94 60 mpfiltrirussia@yahoo.com

MP Filtri Canada Inc. Concord, Ontario - Canada +1 905 303 1369 sales@mpfiltricanada.com

MP Filtri France SAS Villeneuve la Garenne Paris - France +33 (0)1 40 86 47 00 sales@mpfiltrifrance.com

MP Filtri Germany GmbH St. Ingbert - Germany +49 (0) 6894 95652 2-0 sales@mpfiltri.de

MP Filtri India Pvt. Ltd.

Bangalore - India +91 80 4147 7444 / +91 80 4146 1444 sales@mpfiltri.co.in

MP Filtri (Shanghai) Co., Ltd. Shanghai Pudong - China +86 21 58919916 116 sales@mpfiltrishanghai.com

MP Filtri U.K. Ltd. Bourton on the Water Gloucestershire - United Kingdom +44 (0) 1451 822 522 sales@mpfiltri.co.uk

MP Filtri U.S.A. Inc. Quakertown, PA - U.S.A. +1 215 529 1300 sales@mpfiltriusa.com

PASSION TO PERFORM

